Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26566
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李嗣涔
dc.contributor.authorYu-Fan Chenen
dc.contributor.author陳昱帆zh_TW
dc.date.accessioned2021-06-08T07:15:28Z-
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation[1] L. J. Lauhon, Mark S. Gudiksen, Charles M. Lieber, Phil. Trans. R. Soc. Lond. A (2004) 362,1247~1260
[2] Matt Law, Joshua Goldberger, and Peidong Yang, Annu. Rev. Mater. Res. 2004. 34:83-122
[3] S. Tans, A. Verschueren, C. Dekker, Nature (London) 393, 49 (1998)
[4] R. Martel, T. Schmidt, H. R. Shea, T. Hertel, Ph. Avouris, Appl. Phys. Lett. 73, 2447 (1998)
[5] S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002)
[6] V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Nano Lett. 1, 453 (2001)
[7] S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, Nano Lett. 2, 869 (2002)
[8] D. Appell, Nature (London) 419, 553 (2002)
[9] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature 424, 654 (2003)
[10] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 73, 3396 (1998)
[11] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello and S. T. Lee, Appl. Phys. Lett. 75, 1842 (1999)
[12] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, Science 287, 1471(2000)
[13] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 409, 66 (2000)
[14] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, C. M. Lieber, Science 294,1313 (2001)
[15] Y. Cui, Z. Zhong, D. Wang, W. U. Wang, C. M. Lieber, Nano Lett. 3, 149 (2003)
[16] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber, Nature 415, 617 (2002)
[17] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 293, 1289 (2001)
[18] D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S.Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, S. Q. Feng, Phys. Rev. B 59, R2498 (1999)
[19] S. Chung, J. Yu, J. R. Heath, Appl. Phys. Lett. 76, 2068 (2000)
[20] J. Qi, A. M. Belcher, and J. M. White, Appl. Phys. Lett. 82, 2616 (2003)
[21] K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. Wang, M. Cabassi, T. S. Mayer, S. W. Novak, Appl. Phys. Lett. 85, 3101 (2004)
[22] C. Y. Meng, B. L. Shih, S. C. Lee, J. Nanopart. Res. 7, 615 (2005)
[23] Y. Wang, K. Lew, T. Ho, L. Pan, S. W. Novak, E. C. Dickey, J. M. Redwing, T. S. Mayer, Nano Lett. 5, 2139 (2005)
[24] Y. Cui, X. Duan, J. Hu, C. M. Lieber, J. Phys. Chem. B 104, 5213 (2000)
[25] G. Zheng, W. Lu, S. Jin, C. M. Lieber, Adv. Mater. 16, 1890 (2004)
[26] Y. Cui and C. M. Lieber, Science 291, 851 (2001)
[27] J. Westwater, D. P. Gosain, S. Tomiya, S. Usui, and H. Ruda, J. Vac. Sci. Technol. B 15, 554 (1997)
[28] A. M. Morales and C. M. Lieber, Science 279, 208 (1998)
[29] D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998)
[30] R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15, 635 (2003)
[31] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science 287, 71 (2000)
[32] R. S. Wagner ,W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964)
[33] Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001)
[34] Y. Huang, X. Duan, Q. Wei, C. M. Lieber, Science 291, 630 (2001)
[35] Y. Huang, X. Duan, Q. Wei, C.M. Lieber, Science 291, 630 (2001)
[36] B.R. Martin, S.K.St. Angelo, T.E. Mallouk, Adv. Funct. Mater. 12, 759 (2002)
[37] D. Whang, S. Jin, Y. Wu, C.M. Lieber, Nano Lett. 3, 1255 (2003)
[38] M. Tanase, D.M. Silevitch, A. Hultgren, L.A. Bauer, P.C. Searson, G.J. Meyer, D.H. Reich, J. Appl. Phys. 91, 8549 (2002)
[39] L.A. Nagahara, I. Amlani, J. Lewenstein, R.K. Tsui, Appl. Phys. Lett. 80, 3826 (2002)
[40] L. J. Lauhon, M. S. Gudiksen, D. Wang and C. M. Lieber, Nature, 420, 57 (2002)
[41] K. K. Lew, L. Pan, T. E. Bogart, S. M. Dilts, E. C. Dickey, J. M. Redwing, Y. F. Wang, M. Cabassi, T. S. Mayer and S. W. Novak, Appl. Phys. Lett., 85, 3101 (2004)
[42] X. Zhao, C. M.Wei, L. Yang, and M.Y. Chou1, Phys. Rev. Lett., 92, p236805 (2004)
[43] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber, Nature, 409, 66 (2001)
[44] J. S. Hwang, D. Ahn, S. H. Hong, H. K. Kim, S. W. Hwang, B. H. Jeon, and J. H. Choi, Appl. Phys. Lett., 85, 1636 (2004)
[45] (a) Cui, Y.; Lieber, C. M. Science 2001, 291, 851. (b) Huang, Y.; Duan, X.; Cui, Y.; Lauhon, L. J.; Kim, K.; Lieber, C. M. Science 2001, 294, 1313.
[46] (a) Koo, S. M.; Li, Q.; Edelstein, M. D.; Richter, C. A.; Vogel, E. M. Nano Lett. 2005, 5, 2519. (b) Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. Nano Lett. 2006, 6, 973. (c) Cui, Y.; Zhong, Z.; Wang, D.; Wang, W. U.; Lieber, C. M. Nano Lett. 2003, 3, 149. (d) Ng, H. T.; Han, J.; Yamada, Toshishige; Nguyen, P.; Chen, Y. P.;Meyyappan, M. Nano Lett. 2004, 4, 1247. (e) Bryllert, T.; Wernersson, L.-E.; Froberg, L. E.; Samuelson, L. Nanotechnology 2006, 17, S227.
[47] (a) Beckman, R.; Johnston-Halperin, E.; Luo, Y.; Green, J. E.; Heath, J. R. Science 2005, 310, 465. (b) Zhong, Z.; Wang, D.; Cui, Y.; Bockrath, M. W.; Lieber, C. M. Science 2003, 302, 1377.
[48] (a) Agarwal, A.; Lieber, C. M. Appl. Phys. A 2006, 85, 209. (b) Sirbuly, D. J.; Law, M.; Pauzauskie, P.; Yan, H.; Maslov, A. V.; Knutsen, K.; Ning, C.-Z.; Saykally, R. J.; Yang, P. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 7800.
[49] (a) Zou, B. S.; Liu, R. B.; Wang, F. F.; Pan, A. L.; Cao, L.; Wang, Z. L. J. Phys. Chem. B 2006, 110, 12865. (b) Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897. (c) Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. E.; Lieber, C. M. Nature 2001, 409, 66.
[50] Givargizov E. I., J. Chem. Physm. 31,20 (1975)
[51] A. Ural, Y. Li, H. Dai, Appl. Phys. Lett. 81, 3464 (2002)
[52] Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, H. Dai, Appl. Phys. Lett. 79, 3155 (2001)
[53] E., Joselevich, C. M. Lieber, Nano Lett. 2, 1137 (2002)
[54] L. Benedict, S. G. Louie, M. L. C|ohen, Phys. Rev. B 52, 8541 (1995)
[55] O. Englander, D. Christensen, J. Kim, L. Lin, and S. J. S. Morris, Nano letters 5, 705 (2005)
[56] Yung-Chen Lin, Kuo-Chang Lu, Nano letters 8, 3 (2008)
[57] B. El-Kareh, Fundamentals of Semiconductor Processing Technologies, Kluwer Academic Publishing, Boston, MA, 1995, p. 537.
[58] James D. Plummer, Michael D. Deal, Peter B. Griffin, Silicon VLSI Technology, Prentice Hall, 2000, p.716
[59] S.M. Sze, Semiconductor Devices Physics and Technology second edition, 3, 95 (2002)
[60] http://ece-www.colorado.edu/~bart/book/resistiv.xls
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26566-
dc.description.abstract本論文研究利用化學氣相沉積法經由VLS成長機制來成長電場導向及自組裝之未摻雜及微量摻雜的矽奈米線。並觀察到矽奈米線的成長會導向於外加相鄰電極間的局部電場並且跨接兩端電極。此外,我們發現鈦為一種適合電場導向成長矽奈米線的電極材料,並且能在經過兩階段快速熱退火處理後使電極與矽奈米線之間形成歐姆接觸。最後,藉由聚焦離子束輔助白金沉積,白金電極成功的被圖案化在矽奈米線上。再結合Conductive-AFM和TLM量測,可得到矽奈米線之電性以及鈦電極與矽奈米線之間的接觸電阻。zh_TW
dc.description.abstractElectric-field-directed growth and self-assembly of undoped and lightly p-type doped silicon nanowires by chemical-vapor deposition via the vapor-liquid-solid (VLS) growth mechanism in a low pressure chemical vapor deposition (LPCVD) system is demonstrated. The nanowires appeared to align with the localized DC electric field and grew across the gap between two electrodes. Moreover, it is found that titanium is an adequate electrode material for electric-field-directed growth of silicon nanowires, and good ohmic contact between SiNWs and Ti electrode is achieved by means of two stage rapid thermal anneal. With the application of focus ion beam assisted platinum deposition, the platinum pad is patterned on the silicon nanowire. Combined with Conductive-AFM and transmission line measurement, the measurement of the electrical characteristics of silicon nanowire and contact resistance between nanowire and Ti electrode is carried out.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:15:28Z (GMT). No. of bitstreams: 1
ntu-97-R95943050-1.pdf: 4087516 bytes, checksum: 406258f4f47132cb3fd215a924316fe0 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsChapter 1 Introduction................................................................................................1
Chapter 2 Experimental..............................................................................................5
2.1 Deposition system...................................................................................................5
2.1.1 Low pressure chemical vapor deposition (LPCVD)..................................5
2.2 Preparation.............................................................................................................7
2.3 Deposition Procedures............................................................................................9
2.4 Device Fabrication................................................................................................10
2.5 Dual Beam Focus Ion Beam System...................................................................11
2.5.1 Operation principle of Focus Ion Beam....................................................11
2.5.2 Basic function and application...................................................................12
2.5.3 Dual Beam Focus ion beam........................................................................13
2.6 Measurement Techniques....................................................................................15
2.6.1 Current – Voltage characteristics..............................................................15
2.6.2 Thickness Measurement of Metal electrodes............................................15
2.6.3 Characterization of Silicon Nanowires..................................................... 15
2.6.4 Electrical properties measurement of single nanowire............................15
Chapter 3 The Electric-Field-Directed Growth of Silicon Nanowires on Different Materials of Electrode and Ohmic Contact Formation...................17
3.1 Vapor-Liquid-Solid (VLS) Mechanism...............................................................18
3.1.1 VLS- assisted silicon nanowire growth......................................................19
3.1.2 The role of the metal catalyst.....................................................................25
3.2 Electric-Field-Directed Growth of Silicon Nanowires......................................27
3.3 Sample Preparation..............................................................................................29
3.4 Results and Discussion.........................................................................................40
3.4.1 The growth of undoped SiNWs on Mo electrode............................................40
3.4.2 The growth of SiNWs on different materials of electrode.............................44
3.4.2-1 The growth of p-type doped SiNWs on the Al electrode....................47
3.4.2-2 The growth of undoped SiNWs on the Ni electrode...........................49
3.4.2-3 The growth of undoped SiNWs on the Ti electrode...........................53
3.4.2-4 The growth of lightly p-type doped SiNWs on the Ti electrode........57
3.4.2-5 Conclusions............................................................................................61
3.4.3 Ohmic contact formation.................................................................................62
3.4.3-1 Nearly ohmic contact with undoped silicon nanowire.......................65
3.4.3-2 Ohmic contact with lightly p-type doped silcon nanowire................69
Chapter 4 Contact Resistance Measurement...........................................................73
4.1 Contact resistance measurement by Transmission Line Model.......................73
4.2 Focus ion beam (FIB) assisted platinum deposition..........................................75
4.2.1 Operation principle of Focused Ion Beam...............................................75
4.2.2 Ion beam assisted platinum deposition.....................................................75
4.2.3 Experiment..................................................................................................76
4.3 Electrical characteristics of single silicon nanowire measured by conductive atomic force microscope (C-AFM)......................................................................79
4.3.1 Operation principle of AFM.......................................................................79
4.3.2 Operation principle of contact mode AFM...............................................79
4.3.3 Operation principle of Conductive AFM..................................................80
4.3.4 Experiment..................................................................................................80
4.4 Results and Discussion.........................................................................................86
4.4.1 The electrical characteristics and contact resistance measurement of undoped silicon nanowire..........................................................................86
4.4.2 The electrical characteristics and contact resistance measurement of lightly p-type doped silicon nanowire.......................................................90
4.4.3 Conclusions..................................................................................................94
Chapter 5 Conclusions...............................................................................................98
Reference...................................................................................................................100
Appendix A................................................................................................................106
dc.language.isoen
dc.subject矽奈米線zh_TW
dc.subject歐姆接觸zh_TW
dc.subjectNanowiresen
dc.subjectOhmic Contacten
dc.title電場導向矽奈米線之電性與歐姆接觸研究zh_TW
dc.titleThe Electrical Characteristics of the Electric-Field Directed Growth of Silicon Nanowires and Ohmic Contact Formationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭宇軒,林清富,林致廷
dc.subject.keyword矽奈米線,歐姆接觸,zh_TW
dc.subject.keywordNanowires,Ohmic Contact,en
dc.relation.page106
dc.rights.note未授權
dc.date.accepted2008-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved