請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26556
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陸天堯(Tien-Yau Luh) | |
dc.contributor.author | Chih-Wei Chen | en |
dc.contributor.author | 陳智偉 | zh_TW |
dc.date.accessioned | 2021-06-08T07:15:04Z | - |
dc.date.copyright | 2008-08-05 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-28 | |
dc.identifier.citation | 1. For reviews, see: (a) Luh, T.-Y.; Ni, Z.-J. Synthesis 1990, 89. (b) Luh, T.-Y. Acc. Chem. Res. 1991, 24, 257. (c) Luh, T. -Y.; Lee, C. -F. Eur. J. Org. Chem. 2005, 3875. (d) Takeda, T.; Kuroi, S.; Ozaki, M.; Tsubouch, A. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 1291. (e) Takeda, T. Chem. Rec. 2007, 7, 24.
2. (a) Naso, F. Pure Appl. Chem. 1988, 60, 79. (b) Fiandanese, V. Pure Appl. Chem. 1990, 62, 1987. 3. Baumann, E. Ber. 1885, 18, 883. 4. Wuts, P. G. M.; Greene, T. W. Green’s Protective Groups in Organic Synthesis, 4th ed.; John Wiley & Sons, Inc. New Jersey, 2007, pp. 482-494. 5. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry, 4th ed.; Springer Inc. New York, 2000, Part B, pp. 249-309. 6. (a) Groebel, B. T.; Seebach, D. Synthesis 1977, 6, 357. (b) Page, P. C. B.; van Niel, M. B.; Prodger, J. C. Tetrahedron 1989, 45, 7643. 7. (a) Ni, Z.-J.; Luh, T.-Y. J. Chem. Soc., Chem. Commun. 1987, 5151. (b) Ni, Z.-J.; Mei, N.-W.; Shi, X.; Wang, M. C.; Tzeng, Y.-L.; Luh, T.-Y. J. Org. Chem. 1991, 56, 4035. 8. Luh, T.-Y. Pure Appl. Chem. 1996, 68, 105. 9. (a) Ng, D. K. P.; Luh, T.-Y. J. Am. Chem. Soc. 1989, 111, 9119. (b) Yu, C. C.; Ng, D. K. P.; Chen, B.-L.; Luh, T.-Y. Organometallics 1994, 13, 1487. 10. (a) Bullock, R. M.; Samsel, E. G. J. Am. Chem. Soc. 1987, 109, 6542. (b) Bullock, R. M.; Rappoli, B. J.; Samsel, E. G.; Rheingold, A. L. J. Chem. Soc., Chem. Commun. 1989, 261. (c) Donaldson, W. A.; Brodt, C. A. J. Organomet. Chem. 1987, 330, C33; (d) Hill, E. A.; Park, Y.-W.; J. Organomet. Chem. 1988, 356, 1. (e) Fournet, G.; Balme, G.; Gore, J.; Tetrahedron Lett. 1987, 28, 4533. (f) Fournet, G.; Balme, G.; Gore, J.; Tetrahedron 1988, 44, 5809. (g) Fournet, G.; Balme, G.; Barieux, J. J.; Gore, J. Tetrahedron 1988, 44, 5821. 11. (a) Pinke, P. A.; Stauffer, R. D.; Miller, R. G. J. Am. Chem. Soc. 1974, 96, 4235. (b) Salomon, R. G.; Salomon, H. F.; Kachinske, J. L. C. J. Am. Chem. Soc. 1977, 99, 1043. (c) Doyle, M. R.; van Leusen, D. J. J. Org. Chem. 1982, 47, 5236. (d) Sarel, S.; Langbeheim, M. J. J. Chem. Soc., Chem. Commun. 1979, 73. (e) Sarel, S. Acc. Chem. Res. 1978, 11, 204 and references therein. (f) Chiusoli, G. P.; Costa, M.; Melli, L. J. Organomet. Chem. 1988, 358, 495. 12. (a) Ni, Z.-J.; Luh, T.-Y. J. Org. Chem. 1988, 53, 2129. (b) Ni, Z.-J.; Yang, P.-F.; Ng, D. K. P.; Tzeng, Y.-L.; Luh, T.-Y. J. Am. Chem. Soc. 1990, 112, 9356. (c) Ni, Z.-J.; Luh, T.-Y. Org. Synth. 1991, 70, 240-245. (d) For a review, see: Luh, T. -Y.; Wong, K. -T. Symthesis, 1993, 4, 349. 13. Wong, K.-T.; Yuan, T.-M.; Wang, M. C.; Tung, H.-H.; Luh, T.-Y. J. Am. Chem. Soc. 1994, 116, 8920. 14. (a) Tseng, H.-R.; Luh, T.-Y. J. Org. Chem. 1996, 61, 8685. (b) Tseng, H.-R.; Luh, T.-Y. J. Org. Chem. 1997, 62, 4568. (c) Tseng, H.-R.; Lee, C.-F.; Yang, L.-M.; Luh, T.-Y. J. Org. Chem. 1999, 64, 8582 15. (a) Kehira, H.; Tanimoto, S.; Oida, T. J. Chem. Soc., Perkin Trans. 1 1984, 6, 1223. (b) Krief, A.; Kenda, B.; Barbeaux, P. Tetrahedron Lett. 1991, 32, 2509. 16. (a) Tu, H.-Y.; Liu, Y.-H.; Wang, Y.; Luh, T.-Y. Tetrahedron Lett. 2005, 46, 771. (b) Huang, L. -F.; Chen, C. -W.; Luh, T. -Y. Org. Lett. 2007, 9, 3363. 17. (a) Lee, C.-F.; Yang, L.-M.; Hwu, T.-Y.; Feng, A.-H.; Tseng, J.-C.; Luh, T.-Y. J. Am. Chem. Soc. 2000, 122, 4992. (b) Zhang, L.-Z.; Chen, C.-W.; Lee, C.-F.; Wu, C.-C.; Luh, T.-Y. Chem. Commun. 2002, 2336. (c) Lee, C.-F.; Liu, C.-Y.; Song, H.-C.; Luo, S.-J.; Tseng, J.-C.; Tso, H.-H.; Luh, T.-Y. Chem. Commun. 2002, 2824. (d) Liu, C.-Y.; Luh, T.-Y. Org. Lett. 2002, 4, 4305. (e) Chou, C.-M.; Chen, W.-Q.; Chen, J.-H.; Tseng, J.-C.; Lee, C.-F.; Luh, T.-Y. Chem. Asian J. 2006, 1-2, 46. 18. Tseng, J.-C.; Chen, J.-H.; Luh, T.-Y. Synlett. 2006, 1209. 19. (a) Lin, H. -S.; Lin, W. -Y.; Bai, H. -T.; Chen, C. -H.; Jin, B. -Y.; Luh, T. -Y. Angew. Chem., Int. Ed. 2007, 46, 897. (b) Luh, T. -Y.; Lin, H. -S.; Chou, C. -M. Pure Appl. Chem. 2008, 80, 475. (c) Luh, T. -Y. Pure Appl. Chem. 2005, 77, 1213. 20. 曾憲榮 博士論文 台灣大學 1998年 21. Corey, E. J.; Winter, A. E. J. Am. Chem. Soc. 1963, 85, 2677. 22. Corey, E. J.; Hopkins, P. B. Tetrahedron Lett. 1982, 23, 1979. 23. McMurry, J. E.; Fleming, M. P. J. Org. Chem. 1976, 41, 896. 24. For a review, see : Bloomfield, J. J.; Owsley, D. C.; Nelke, J. M. Org. React. (N. Y.) 1976, 23, 259. 25. Garegg, P. J.; Johnsson, R.; Ortega, C.; Samuelsson, B. J. Chem. Soc., Perkin Trans. 1 1982, 681. 26. Pakulski, Z.; Zamojski, A. Carbohydr. Res. 1990, 205, 410. 27. Dykstra, H. B.; Lewis, J. F.; Boord, C. E. J. Am. Chem. Soc. 1930, 52, 3396. 28. Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc. 1986, 108, 7408. 29. For reviews, see: (a) Peterson, D. J. J. Org. Chem. 1968, 33, 780. (b) Ager, D. J. Org. React. (N. Y.) 1990, 38, 1. (c) Barrett, A. G. M.; Hill, J. M.; Wallace, E. M.; Flygare, J. A. Synlett 1991, 764. (d) van Staden, L. F.; Gravestock, D.; Ager, D. J. Chem. Soc. Rev. 2002, 31, 195. 30. For reviews, see: (a) Dumeunier, R.; Marko, I. E. Modern Carbonyl Olefination Wiley-VCH, 2004; pp 104-150. (b) Alonso, D.; Fuensanta, M.; Najera, C.; Varea, M. Phosphorus, Sulfur Silicon Relat. Elem. 2005, 180, 1119. (c) Plesniak, K.; Zarecki, A.; Wicha, J. Top. Curr. Chem. 2007, 275, 163. 31. For reviews, see: (a) Maercker, A. Org. React. 1965, 14, 270. (b) Wadsworth, W. S. Org. React. (N. Y.) 1977, 25, 73. (c) Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89, 863. (d) Shen, Y.-C. Acta Chim. Sin. 2000, 58, 253. 32. Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173. 33. Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 36, 3769. 34. Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611. 35. Nysted, L. N. U.S. 1975, 6 pp. 36. Ghatak, U. R.; Chakrabarty, S. J. Am. Chem. Soc. 1972, 94, 4758. 37. (a) Mukaiyama, T.; Shiono, M.; Sato, T. Chem. Lett. 1974, 1, 37. (b) Mukaiyama, T.; Shiono, M.; Watanabe, K.; Onaka, M. Chem. Lett. 1975, 7, 871. (c) Mukaiyama, T.; Imaoka, M. Chem. Lett. 1978, 4, 413. 38. Denis, J. N.; Dumont, W.; Krief, A. Tetrahedron Lett. 1979, 42, 4111. 39. Helmkamp, G. K.; Pettitt, D. J. J. Org. Chem. 1960, 25, 1754. 40. Gybin, A. S.; Smit, A. S. Tetrahedron 1980, 36, 1361. 41. For reviews, see: (a) Mitsunobu, O. Synthesis 1981, 1. (b) Hughes, D. L. Org. React. (N.Y.) 1992, 42, 335. (c) But, T. Y. S.; Toy, P. H. Chem. Asian J. 2007, 2, 1340. 42. (a) Ferrier, R. J.; Schmidt, P.; Tyler, P. C. J. Chem. Soc., Perkin Trans. 1 1985, 2, 301. (b) Callam, C. S.; Gadikota, R. R.; Lowary, T. D. J. Org. Chem. 2001, 66, 4549. (c) Dave, R.; Sasaki, N. A. Org. Lett. 2004, 6, 15. (d) Koyama, Y.; Lear, M. J.; Yoshimura, F.; Ohashi, I.; Mashimo, T.; Hirama, M. Org. Lett. 2005, 7, 267. (e) Thoret, S.; Gueritte, F.; Guenard, D.; Dubois, J. Org. Lett. 2006, 8, 2301. (f) Bai, Y.; Lowary, T. L. J. Org. Chem. 2006, 71, 9672. (g) Garcia-Delgado, N.; Riera, A.; Verdaguer, X. Org. Lett. 2007, 9, 635. 43. (a) Bose, A. K.; Sahu, D. P.; Manhas, M. S. J. Org. Chem. 1981, 46, 1229. (b) Ibuka, T.; Mimura, N.; Aoyama, H.; Akaji, M.; Ohno, H.; Miwa, Y.; Taga, T.; Nakai, K.; Tamamura, H.; Fujii, N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 999. (c) Hillier, M. C.; Davidson, J. P.; Martin, S. F. J. Org. Chem. 2001, 66, 1657. (d) Ohno, H.; Miyamura, K.; Tanaka, T.; Oishi, S.; Toda, A.; Takemoto, Y.; Fujii, N.; Ibuka, T. J. Org. Chem. 2002, 67, 1359. (e) Galonic, D. P.; Ide, N. D.; van der Donk, W. A.; Gin, D. Y. J. Am. Chem. Soc. 2005, 127, 7359. (f) Gandhi, S.; Bisai, A.; Prasad, B. A. B.; Singh, V. K. J. Org. Chem. 2007, 72, 2133. (g) Caldwell, J. J.; Craig, D. Angew. Chem., Int. Ed. 2007, 46, 2631. 44. Camp, D.; Jenkins, I. D. Aust. J. Chem. 1990, 43, 161. 45. Afonso, C. A. M.; Barros, M. T.; Maycock, C. D. Tetrahedron 1999, 55, 801. 46. For examples: (a) Maldonado, L. A.; Manjarrez, N. Heterocycles 1985, 23, 1985. (b) Caputo, R.; Ferreri, C.; Palumbo, G. Tetrahedron Lett. 1986, 42, 2369. (c) Tani, H.; Inamasu, T.; Tamura, R.; Suzuki, H. Chem. Lett. 1990, 1323. (d) Jekö, J.; Timár, T.; Jaszberenyi, J. C. J. Org. Chem. 1991, 56, 6748. (e) Tani, H.; Kamada, Y.; Azuma, N.; Ono, N. Tetrahedron Lett. 1994, 35, 7051. (f) Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. Angew. Chem. Int. Ed. 2003, 42, 98. (g) Peng, L.; Zhang, X.; Zhang, S.; Wang, J. J. Org. Chem. 2007, 72, 1192. 47. (a) Takahashi, M.; Ogasawara, K. Tetrahedron: Asymmetry 1997, 8, 3125. (b) Lochead, A.; Galli, F.; Jegham, S.; Nedelec, P.; George, P. Synth. Commun. 1999, 29, 799. (c) Yus, M.; Soler, T.; Foubelo, F. Tetrahedron: Asymmetry 2001, 12, 801. (d) Shi, Y. -J.; Hughes, D. L.; McNamara, J. M. Tetrahedron Lett. 2003, 44, 3609. (e) La Clair, J. J. Angew. Chem. Int. Ed. 2006, 45, 2769. 48. (a) Lee, C. -F.; Yang, L. -M.; Hwu, T. -Y.; Feng, A. -S.; Tseng, J. -C.; Luh, T. -Y. J. Am. Chem. Soc. 2000, 122, 4992. (b) Lee, C. -F.; Lin, C. -Y.; Song, H. -C.; Luo, S. -J.; Tseng, J. -C.; Tso, H. -H.; Luh, T. -Y. Chem. Commun. 2002, 2824. (c) Chou, C.-M.; Chen, W. -Q.; Chen, J. -H. ; Lin, C. -L. ; Tseng, J. -C.; Lee, C. -F.; Luh, T. -Y. Chem. Asian. J. 2006, 1, 46. 49. (a) Visser, R. G.; Bos, H. J. T.; Brandsma, L. Recl. Trav. Chim. Pays-Bas 1981, 100, 34. (b) Visser, R. G.; Brandsma, L.; Bos, H. J. T. Tetrahedron Lett. 1981, 22, 2827. (c) Wang, K. K.; Li, B.; Lu, Y. -D. J. Org. Chem. 1995, 60, 1885. (d) Wang, K. K.; Liu, B.; Lu, Y. -D. Tetrahedron Lett. 1995, 36, 3785. (e) Bildstein, B.; Schweiger, M.; Kopacka, H.; Wurst, K. J. Organomet. Chem. 1998, 553, 73. (f) Leclerc, E.; Tius, M. A. Org. Lett. 2003, 5, 1171. 50. (a) Cahiez, G.; Chavant, P. -Y.; Metais, E. Tetrahedron Lett. 1992, 33, 5245. (b) Shen, Y. -C.; Prakash, C. V. S.; Kuo, -Y. H. J. Nat. Prod. 2001, 64, 324. (c) El Sayed, K. A.; Mayer, M. S.; Kelly, M.; Hamann, M. T. J. Org. Chem. 1999, 64, 9258. (d) Jadulco, R.; Proksch, P.; Wray, V.; Sudarsono; Berg, A.; Gräfe, U. J. Nat. Prod. 2001, 64, 527. 51. Paal, C. Ber. 1884, 17, 2756. 52. Garst, M. E.; Spencer, T. A. J. Am. Chem. Soc. 1973, 95, 250. 53. (a) Feist, F. Ber. 1902, 35, 1545. (b) Benary, E. Ber. 1911, 44, 493. 54. Couffignal, R. Synthesis 1978, 581. 55. Clauson-Kass, N Acta Chem. Scand. 1961, 15, 1177. 56. (a) Seyferth, H. E. Chem. Ber. 1968, 101, 619. (b) Cormier, R. A.; Grosshans, C. A.; Skibbe, S. L. Synth. Commun. 1988, 18, 677. (c) Cornforth, J. W. J. Chem. Soc. 1958, 1310. (d) Miller, D J. Chem. Soc. C 1969, 12. 57. Marshall, J. A.; DuBay, W. J. J. Org. Chem. 1993, 58, 3435. 58. (a) Marshall, J. A.; Robinson, E. D. J. Org. Chem. 1990, 55, 3450. (b) Marshall, J. A.; Wang, X. J. Org. Chem. 1991, 56, 960. (c) Marshall, J. A.; Bartley, G. S. J. Org. Chem. 1994, 59, 7169. (d) Marshall, J. A.; Wallace, E. M. J. Org. Chem. 1995, 60, 796. 59. (a) Ma, S.; Li, L. Org. Lett. 2000, 2, 941. (b) Ma, S.; Zhang, J.; Lu, L. Chem. Eur. J. 2003, 9, 2447-2456. 60. Kim, S.; Kim, Y. G. Synlett 1991, 869. 61. Fukuda, Y.; Shiragami, H.; Utimoto, K.; Nozaki, H. J. Org. Chem. 1991, 56, 5816. 62. Zhang, D.; Yuan, C. Eur. J. Org. Chem. 2007, 23, 3916. 63. For palladium compounds catalyzing cyclization reactions, see:(a) Galaj, S.; Guichon, Y.; Pascal, Y. L. C. R. Seances Acad. Sci., Ser. C 1979, 288, 541. (b) Wakabayashi, Y.; Fukuda, Y.; Shiragami, H.; Utimoto, K.; Nozaki, H. Tetrahedron 1985, 41, 3655. (c) Qing, F. -L.; Gao, W. -Z.; Ying, J. J. Org. Chem. 2000, 65, 2003. (d) Zhang, J.; Zhao, X.; Lu, L. Tetrahedron Lett. 2007, 48, 1911. 64. For iodine cyclization reactions, see:El-Taeb, G. M. M.; Evans, A. B.; Jones, S.; Knight, D. W. Tetrahedron Lett. 2001, 42, 5945. 65. For zinc cyclization reactions, see:Pasha, M. K.; Ahmad, F. Lipids 1993, 28, 1027. 66. For mercury cyclization reactions, see:(a) Venus-Danilova, E. D.; Al'bitskaya, V. M. Zh. Obshch. Khim. 1952, 22, 816. (b) Pavlova, L. A. Zh. Obshch. Khim. 1955, 25, 1471. (c) Fabritsy, A.; Venus-Danilova, E. D. Zh. Obshch. Khim. 1958, 28, 3227. (d) Fabritsy, A.; Goshchinskii, S. Zh. Obshch. Khim. 1959, 29, 81. (e) Fabrycy, A.; Kubala, J. Zh. Obshch. Khim. 1961, 31, 476. (f) Baranov, N. N.; Malinovskii, M. S.; Khmel, M. P. Khim. Geterotsikl. Soedin. 1977, 9, 1164. (g) Fabrycy, A.; Wichert, Z. Zh. Obshch. Khim. 1979, 49, 2499. 67. Marshall, J. A.; Sehon, C. A. Org. Synth. 1999, 76, 263. 68. (a) Hoffmann-Roeder, A.; Krause, N. Org. Lett. 2001, 3, 2537. (b) Morita, N.; Krause, N. Org. Lett. 2004, 6, 4121. (c) Morita, N.; Krause, N. Angew. Chem., Int. Ed. 2006, 45, 1897. 69. Alfonsi, M.; Arcadi, A.; Aschi, M.; Bianchi, G.; Marinelli, F. J. Org. Chem. 2005, 70, 2265. 70. Hashmi, A. S. K.; Schwarz, L.; Choi, J. -H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285. 71. Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050. 72. Sromek, A. W.; Rubina, M.; Gevorgyan, V. J. Am. Chem. Soc. 2005, 127, 10500. 73. Bridges, A. J.; Thomas, R. D. J. Chem. Soc., Chem. Commun. 1984, 694 74. (a) Fujita, E.; Nagao, Y.; Kaneko, K. Chem. Pharm. Bull. 1978, 26, 3743. (b) Lipshutz, B. H.; Moretti, R.; Crow, R. Tetrahedron Lett. 1989, 30, 15. 75. Corey, E. J.; Crouse, D. J. Org. Chem. 1968, 33, 298. 76. Kang, S. -U.; Choi, W. J.; Oishi, S.; Lee, K.; Karki, R. G.; Worthy, K. M.; Bindu, L. K.; Nicklaus, M. C.; Fisher, R. J.; Burke, Jr. T. R. J. Med. Chem. 2007, 50, 1978. 77. Méndez-Andio, J.; Paquette, L. A. Org. Lett. 2000, 2, 4095. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26556 | - |
dc.description.abstract | 本篇論文圍繞在烷基取代炔丙基硫縮醛的新型態烯化反應,可分為兩部分進行探討。
在本實驗室先前的研究中發現,烷基取代炔丙基硫縮酮與正丁基鋰進行開環反應後,若是與羰基化合物反應,能夠以高產率、具位向選擇性的生成高炔丙基醇。這樣的結果顯示出了和先前苯基取代炔丙基硫縮醛的例子相反的選擇性。似乎是取代基效應所造成的影響,烷基取代基傾向生成高炔丙基醇,而苯基取代基造成傾向生成丙二烯醇。 第一部分,我們利用溫和的Mitsunobu條件將高炔丙基醇轉變為相對應的烯炔產物。由於使用了對於官能基有很大容忍度的Mitsunobu condition,所以對於強還原環境敏感的溴取代、腈基與酯基均可得到相對應的產物,甚至受保護的醇基與硫縮酮官能基也可以得到相對應的烯炔產物。在立體選擇性方面,在一般的例子中主要的得到E選擇性的烯炔產物。進一步增大烯上的取代基則可以得到Z選擇性的烯炔產物。利用如此的方式,也許還可以用來合成含烯炔的高分子。初步的前測試充分的表現出合成高分子的可能性。 第二部分,我們發展出一個便利且具有高度位向選擇性的方法來製備三取代碘化呋喃,由高炔丙基醇可以順利的得到2,4,5-三取代碘化呋喃。將高炔丙基醇與醋酸汞反應後,進一步加入碘試劑置換後,便能以中等至好的產率生成三取代碘化呋喃。其呋喃環上2號及4號位置的取代基乃源自於高炔丙基醇之炔丙基,5號位置的取代基乃源自於醇之偕位,故藉此方法合成之碘化呋喃化合物具有高度的位向選擇性。相較先前利用丙二烯醇中間體合成三取代碘化呋喃的方式具有不同的位向選擇性。 | zh_TW |
dc.description.abstract | The new olefination methods of alkyl substituted propargylic dithioacetals are described in this thesis. It can be divided into two parts for discussions.
In previous results, Alkyl substituted propargylic dithioacetals treating with butyl lithium then were allowed to react with carbonyl compounds to form homopropargylic alcohol with high yields and highly regioselective. This result showed different selsctivity comparing with aryl substituted propargylic dithioacetals. It seemed that different regioselectivies arose from different substiuents. Alkyl substituted ones were prefer to form homopropargylic alcohol and aryl ones were prefer to form allenyl alcohol. The first part, we used the mild Mitsunobu conditions transforming homopropargylic alcohol into corresponding enyne derivatives. Because of using Mitsunobu conditions, which have highly functional group tolerance, the strong reduction environments sensitive substituents, like bromine, ester, and cyano group, may go through the reaction smoothly. Even the protected alcohol moiety and dithioacetal moiety also can proceed in the reaction environments. The steoreselectiviy showed the E selectivity in most of cases and Z selectivity was presented in larger substituents like mesityl and 1-naphthyl. Further pretests of synthesizing polymers also showed the highly possibility of synthetic single molecular weigh polymers. The second part, we have developed a convenient and highly-regioselective approach to synthesis of trisubstituted iodofurans. Treating homoparpargylic alcohols with mercury acetate following with iodine reagent can be smooth converted to 2,4,5-trisubstituted iodofurans in moderate to good yields. The substituents on 2 and 4 position of furan ring were derived from the propargylic part of homopropargylic alcohol, and the substituent on 5 position of furan ring was derived from the | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:15:04Z (GMT). No. of bitstreams: 1 ntu-97-R95223012-1.pdf: 7670374 bytes, checksum: 8493567c1e58cbe5cfbe0f063f68da4c (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 目 錄
口試委員會審定書 誌謝 I 中文摘要 II 英文摘要 III 目錄 IV 英文縮寫對照表 VI 第一章 緒論 1 第二章 新型態之beta-硫醚取代高炔丙基醇之脫去反應 13 2.1 背景資料 13 2.2 利用環锍化物中間體進行成烯反應 19 2.2.1 高炔丙基醇42的合成 20 2.2.2 環锍化物生成的測試 23 2.2.3 利用Mitsunobu條件進行成烯反應 24 2.3 合成含烯炔之高分子的前測試 36 2.4 結論 40 第三章 高炔丙基醇之呋喃成環反應 42 3.1 背景資料 42 3.2 Au(III)推動之高炔丙基醇之呋喃成環反應 49 3.3 Hg(II)推動之高炔丙基醇之呋喃成環反應 52 3.4 結論 55 第四章 實驗部分 57 4.1 測試儀器 57 4.2 實驗步驟 58 第五章 參考文獻 109 附錄 117 表目錄 表 1-1 芳香基取代炔丙基硫縮醛22經開環後以不同親電試劑淬熄之結果 5 表 2-1 由炔丙基硫縮酮22或58合成高炔丙基醇42 22 表 2-2 由高炔丙基醇42合成烯炔43 27 表 2-3 具強拉電子基團的苯環取代高炔丙基醇42脫去反應前後立體異構物比例變化比較 30 表 2-4 三苯基磷與三正丁基磷對成烯反應的比較 35 表 3-1 由高炔丙基醇42合成碘化呋喃150 54 | |
dc.language.iso | zh-TW | |
dc.title | 炔丙基硫縮醛(酮)的烯化反應 | zh_TW |
dc.title | The Olefination Reactions of Propargylic Dithioacetal | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡蘊明(Yeun-Min Tsai),梁文傑(Man-kit Leung) | |
dc.subject.keyword | 炔丙基硫縮醛,高炔丙基醇, | zh_TW |
dc.subject.keyword | propargylic dithioacetal,homopropargylic alcohol, | en |
dc.relation.page | 115 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-07-30 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 7.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。