Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26537
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙
dc.contributor.authorPing-Yun Tsaien
dc.contributor.author蔡秉芸zh_TW
dc.date.accessioned2021-06-08T07:14:13Z-
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citationBamia, C., Trichopoulou, A., Lenas, D., & Trichopoulos, D. (2004). Tobacco smoking in relation to body fat mass and distribution in a general population sample. Int J Obes Relat Metab Disord, 28(8), 1091-1096.
Barrett-Connor, E., & Khaw, K. T. (1989). Cigarette smoking and increased central adiposity. Ann Intern Med, 111(10), 783-787.
Bloch KV, Klein CH, Silva A, Nogueira A, Salis L. (2003) Socioeconomic Aspect of Spousal Concordance for Hypertension, Obesity, and Smoking in a Community of Rio deJaneiro,Brazil. Arq Bras Cardiol. 80(2)179-38.
Bouchard, C., Tremblay, A., Despres, J. P., Nadeau, A., Lupien, P. J., Theriault, G., et al. (1990). The response to long-term overfeeding in identical twins. N Engl J Med, 322(21), 1477-1482.
Boucher, B. J., Ewen, S. W., & Stowers, J. M. (1994). Betel nut (Areca catechu) consumption and the induction of glucose intolerance in adult CD1 mice and in their F1 and F2 offspring. Diabetologia, 37(1), 49-55.
Boucher, B. J., & Mannan, N. (2002). Metabolic effects of the consumption of Areca catechu. Addict Biol, 7(1), 103-110.
The burden of overweight and obesity in the Asia-Pacific region. (2007). Obes Rev, 8(3), 191-196.
Cameron, A. J., Welborn, T. A., Zimmet, P. Z., Dunstan, D. W., Owen, N., Salmon, J., et al. (2003). Overweight and obesity in Australia: the 1999-2000 Australian Diabetes, Obesity and Lifestyle Study (AusDiab). Med J Aust, 178(9), 427-432.
Chaix, B., & Chauvin, P. (2003). Tobacco and alcohol consumption, sedentary lifestyle and overweightness in France: a multilevel analysis of individual and area-level determinants. Eur J Epidemiol, 18(6), 531-538.
Chang, V. W., & Lauderdale, D. S. (2005). Income disparities in body mass index and obesity in the United States, 1971-2002. Arch Intern Med, 165(18), 2122-2128.
Chang, W. C., Hsiao, C. F., Chang, H. Y., Lan, T. Y., Hsiung, C. A., Shih, Y. T., et al. (2006). Betel nut chewing and other risk factors associated with obesity among Taiwanese male adults. Int J Obes (Lond), 30(2), 359-363.
Chiolero, A., Jacot-Sadowski, I., Faeh, D., Paccaud, F., & Cornuz, J. (2007). Association of cigarettes smoked daily with obesity in a general adult population. Obesity (Silver Spring), 15(5), 1311-1318.
Chiu, Y. H., Lin, W. Y., Wang, P. E., Chen, Y. D., Wang, T. T., Warwick, J., et al. (2007). Population-based family case-control proband study on familial aggregation of metabolic syndrome: finding from Taiwanese people involved in Keelung community-based integrated screening (KCIS no. 5). Diabetes Res Clin Pract, 75(3), 348-356.
Colditz GA, S. M., Myers AH, Stampfer MJ, Willett W, Speizer FE (1992). Weight change in relation to smoking cessation in women. J Smoking Relat Dis, 3(2), 145-153.
Cournot, M., Ruidavets, J. B., Marquie, J. C., Esquirol, Y., Baracat, B., & Ferrieres, J. (2004). Environmental factors associated with body mass index in a population of Southern France. Eur J Cardiovasc Prev Rehabil, 11(4), 291-297.
Cryer, P. E., Haymond, M. W., Santiago, J. V., & Shah, S. D. (1976). Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events. N Engl J Med, 295(11), 573-577.
Davison KK and Birch LL. (2001). Childhood overweight: a contextual model and recommendation for future research. Obesity reviews, 2, 159-171.
Diez-Roux, A. V. (1998). Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am J Public Health, 88(2), 216-222.
Dragano, N., Bobak, M., Wege, N., Peasey, A., Verde, P. E., Kubinova, R., et al. (2007). Neighbourhood socioeconomic status and cardiovascular risk factors: a multilevel analysis of nine cities in the Czech Republic and Germany. BMC Public Health, 7(147), 255.
Dubowitz TD, Heron M, Bird CE, Lurie N, Finch BK et al. (2008) Neighborhood socioeconomic status and fruit and vegetable intake smong whites, blacks, and Mexican Americans in the United States. Am J Clin Nutri. 87:1883-91.
Egger, G., & Swinburn, B. (1997). An 'ecological' approach to the obesity pandemic. Bmj, 315(7106), 477-480.
Ellaway, A., Anderson, A., & Macintyre, S. (1997). Does area of residence affect body size and shape? Int J Obes Relat Metab Disord, 21(4), 304-308.
Fabsitz, R. R., Carmelli, D., & Hewitt, J. K. (1992). Evidence for independent genetic influences on obesity in middle age. Int J Obes Relat Metab Disord, 16(9), 657-666.
Faith MS, Keller KL, JohnsonSL et al. (2004) Familial aggregation of energy intake in children. Am J Clin Nutr. May;79(5):844-50.
Feng Y, Zang T, Xu X et al. (2008). Familial aggregation of metabolic syndrome and its components in a large Chinese population. Obesity. 16(1) 125-29.
Field, A. E., Coakley, E. H., Must, A., Spadano, J. L., Laird, N., Dietz, W. H., et al. (2001). Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med, 161(13), 1581-1586.
Flegal, K. M., Carroll, M. D., Ogden, C. L., & Johnson, C. L. (2002). Prevalence and trends in obesity among US adults, 1999-2000. Jama, 288(14), 1723-1727.
Flegal, K. M., Troiano, R. P., Pamuk, E. R., Kuczmarski, R. J., & Campbell, S. M. (1995). The influence of smoking cessation on the prevalence of overweight in the United States. N Engl J Med, 333(18), 1165-1170.
Fuentes RM, Notkola IL, Shemeikka S, Tuomilehto J, Nissinen A. (2002) Familial aggregation of body mass index: a population-based family study in eastern Finland. Horm Metab Res; 34(7), 406-10.
Guh, J. Y., Chuang, L. Y., & Chen, H. C. (2006). Betel-quid use is associated with the risk of the metabolic syndrome in adults. Am J Clin Nutr, 83(6), 1313-1320.
Haarbo, J., Hansen, B. F., & Christiansen, C. (1991). Hormone replacement therapy prevents coronary artery disease in ovariectomized cholesterol-fed rabbits. Apmis, 99(8), 721-727.
Haarbo, J., Marslew, U., Gotfredsen, A., & Christiansen, C. (1991). Postmenopausal hormone replacement therapy prevents central distribution of body fat after menopause. Metabolism, 40(12), 1323-1326.
Hill, J. O., & Melanson, E. L. (1999). Overview of the determinants of overweight and obesity: current evidence and research issues. Med Sci Sports Exerc, 31(11 Suppl), S515-521.
Hill, J. O., & Peters, J. C. (1998). Environmental contributions to the obesity epidemic. Science, 280(5368), 1371-1374.
Hofstetter, A., Schutz, Y., Jequier, E., & Wahren, J. (1986). Increased 24-hour energy expenditure in cigarette smokers. N Engl J Med, 314(2), 79-82.
Huang, K. C. (2008). Obesity and its related diseases in Taiwan. Obes Rev, 9 Suppl 1, 32-34.
Huang, K. C., Lin, W. Y., Lee, L. T., Chen, C. Y., Lo, H., Hsia, H. H., et al. (2002). Four anthropometric indices and cardiovascular risk factors in Taiwan. Int J Obes Relat Metab Disord, 26(8), 1060-1068.
Hwang, L. C., Bai, C. H., & Chen, C. J. (2006). Prevalence of obesity and metabolic syndrome in Taiwan. J Formos Med Assoc, 105(8), 626-635.
Jee, S. H., Lee, S. Y., Nam, C. M., Kim, S. Y., & Kim, M. T. (2002). Effect of smoking on the paradox of high waist-to-hip ratio and low body mass index. Obes Res, 10(9), 891-895.
Jeffery, R. W., Forster, J. L., Folsom, A. R., Luepker, R. V., Jacobs, D. R., Jr., & Blackburn, H. (1989). The relationship between social status and body mass index in the Minnesota Heart Health Program. Int J Obes, 13(1), 59-67.
Ku, P. W., Fox, K. R., McKenna, J., & Peng, T. L. (2006). Prevalence of leisure-time physical activity in Taiwanese adults: results of four national surveys, 2000-2004. Prev Med, 43(6), 454-457.
Lahti-Koski, M., Pietinen, P., Heliovaara, M., & Vartiainen, E. (2002). Associations of body mass index and obesity with physical activity, food choices, alcohol intake, and smoking in the 1982-1997 FINRISK Studies. Am J Clin Nutr, 75(5), 809-817.
Lin, W. Y., Chiu, T. Y., Lee, L. T., Lin, C. C., Huang, C. Y., & Huang, K. C. (2008). Betel nut chewing is associated with increased risk of cardiovascular disease and all-cause mortality in Taiwanese men. Am J Clin Nutr, 87(5), 1204-1211.
Lin, Y. C., Yen, L. L., Chen, S. Y., Kao, M. D., Tzeng, M. S., Huang, P. C., et al. (2003). Prevalence of overweight and obesity and its associated factors: findings from National Nutrition and Health Survey in Taiwan, 1993-1996. Prev Med, 37(3), 233-241.
Lissner, L., & Heitmann, B. L. (1995). Dietary fat and obesity: evidence from epidemiology. Eur J Clin Nutr, 49(2), 79-90.
McLaren, L. (2007). Socioeconomic status and obesity. Epidemiol Rev, 29, 29-48.
Must, A., Spadano, J., Coakley, E. H., Field, A. E., Colditz, G., & Dietz, W. H. (1999). The disease burden associated with overweight and obesity. Jama, 282(16), 1523-1529.
Pan, W. H., Lee, M. S., Chuang, S. Y., Lin, Y. C., & Fu, M. L. (2008). Obesity pandemic, correlated factors and guidelines to define, screen and manage obesity in Taiwan. Obes Rev, 9 Suppl 1, 22-31.
Park, HS, Park JY, Sung_IL Cho (2005). Familial aggregation of the metabolic sybdrome in Korean families with adolescents. Atherosclerosis 186, 215-221.
Pearce J, Blakely T, Witten K, Bartie P (2007). Neighborhood deprivation and access to fast-food retailing. A national study. Am J Prev Med 2007; 32(5)
Perusse, L., & Bouchard, C. (2000). Gene-diet interactions in obesity. Am J Clin Nutr, 72(5 Suppl), 1285S-1290S.
Pickett, K. E., & Pearl, M. (2001). Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health, 55(2), 111-122.
Price, R. A., & Gottesman, II (1991). Body fat in identical twins reared apart: roles for genes and environment. Behav Genet, 21(1), 1-7.
Rankinen, T., Zuberi, A., Chagnon, Y. C., Weisnagel, S. J., Argyropoulos, G., Walts, B., et al. (2006). The human obesity gene map: the 2005 update. Obesity (Silver Spring), 14(4), 529-644
Ravussin, E., Lillioja, S., Knowler, W. C., Christin, L., Freymond, D., Abbott, W. G., et al. (1988). Reduced rate of energy expenditure as a risk factor for body-weight gain. N Engl J Med, 318(8), 467-472.
Ravussin, E., Valencia, M. E., Esparza, J., Bennett, P. H., & Schulz, L. O. (1994). Effects of a traditional lifestyle on obesity in Pima Indians. Diabetes Care, 17(9), 1067-1074.
Reijneveld, S. A. (1998). The impact of individual and area characteristics on urban socioeconomic differences in health and smoking. Int J Epidemiol, 27(1), 33-40.
Robert, S. A., & Reither, E. N. (2004). A multilevel analysis of race, community disadvantage, and body mass index among adults in the US. Soc Sci Med, 59(12), 2421-2434.
Seidell, J. C. (1998). Dietary fat and obesity: an epidemiologic perspective. Am J Clin Nutr, 67(3 Suppl), 546S-550S.
Shimokata, H., Muller, D. C., & Andres, R. (1989). Studies in the distribution of body fat. III. Effects of cigarette smoking. Jama, 261(8), 1169-1173.
Sneve, M., & Jorde, R. (2008). Cross-sectional study on the relationship between body mass index and smoking, and longitudinal changes in body mass index in relation to change in smoking status: The Tromso Study. Scand J Public Health, 36(4), 397-407.
Sobal, J., & Stunkard, A. J. (1989). Socioeconomic status and obesity: a review of the literature. Psychol Bull, 105(2), 260-275.
Sorensen, T. I. (1995). The genetics of obesity. Metabolism, 44(9 Suppl 3), 4-6.
Spiegelman, D., Israel, R. G., Bouchard, C., & Willett, W. C. (1992). Absolute fat mass, percent body fat, and body-fat distribution: which is the real determinant of blood pressure and serum glucose? Am J Clin Nutr, 55(6), 1033-1044.
Sundquist, J., & Johansson, S. E. (1998). The influence of socioeconomic status, ethnicity and lifestyle on body mass index in a longitudinal study. Int J Epidemiol, 27(1), 57-63.
Sundquist, J., Malmstrom, M., & Johansson, S. E. (1999). Cardiovascular risk factors and the neighbourhood environment: a multilevel analysis. Int J Epidemiol, 28(5), 841-845.
Taubes, G. (1998). As obesity rates rise, experts struggle to explain why. Science, 280(5368), 1367-1368.
Tavani, A., Negri, E., & La Vecchia, C. (1994). Determinants of body mass index: a study from northern Italy. Int J Obes Relat Metab Disord, 18(7), 497-502.
van Lenthe, F. J., & Mackenbach, J. P. (2002). Neighbourhood deprivation and overweight: the GLOBE study. Int J Obes Relat Metab Disord, 26(2), 234-240.
Wenche, D. B., Holmen, J., Kruger, O., & Midthjell, K. (2004). Leisure time physical activity and change in body mass index: an 11-year follow-up study of 9357 normal weight health women 20-49 years old. J Womens Health (Larchmt), 13(1), 55-62.
WHO website www.who.int/nut/obs.htm. .
'World Health Organization. Obesity:preventing and managing the global epidemic. Geneva: World Health Organization,' 2000
Williamson, D. F., Madans, J., Anda, R. F., Kleinman, J. C., Kahn, H. S., & Byers, T. (1993). Recreational physical activity and ten-year weight change in a US national cohort. Int J Obes Relat Metab Disord, 17(5), 279-286.
World Health Organization. Obesity:preventing and managing the global epidemic. Geneva: World Health Organization. (2000).
Wu, D. M., Hong, Y., Sun, C. A., Sung, P. K., Rao, D. C., & Chu, N. F. (2003). Familial resemblance of adiposity-related parameters: results from a health check-up population in Taiwan. Eur J Epidemiol, 18(3), 221-226.
Yen, A. M., Chen, L. S., Chiu, Y. H., Boucher, B. J., & Chen, T. H. (2008). A prospective community-population-registry based cohort study of the association between betel-quid chewing and cardiovascular disease in men in Taiwan (KCIS no. 19). Am J Clin Nutr, 87(1), 70-78.
Yen, A. M., Chiu, Y. H., Chen, L. S., Wu, H. M., Huang, C. C., Boucher, B. J., et al. (2006). A population-based study of the association between betel-quid chewing and the metabolic syndrome in men. Am J Clin Nutr, 83(5), 1153-1160.
楊偉勛 (2001 ). 人類肥胖基因之研究. 國家衛生研究院論壇.
衛生署網站 http://www.doh.gov.tw.
戴政 (2002). 遺傳流行病學─基因定位之遺傳設計與分析方法. 藝軒出版社
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26537-
dc.description.abstract研究背景及目的
肥胖的盛行日益嚴重,對健康造成的影響重大,而其成因相當的複雜且尚未被充分了解。過去流行病學的研究多著重於個人危險因子的探究,但環境中存在許多群體層次因素及社會脈絡因素 (contextual factors),經由直接或間接的方式影響肥胖是值得去研究的。而有關肥胖社會脈絡因素之研究,很少同時將家族聚集之因素一起考慮。所以本研究目的是利用多階層模式探討肥胖與家族聚集、個人層級、及區域層級因素之相關性。
材料與方法
本研究對象是從1999年到2005年參加基隆市整合式篩檢 (Keelung community-based integrated screening program, KCIS)20-69歲的民眾,共74,833人。收集的資料包括戶籍檔資料、人口特徵學資料包括個人教育程度及婚姻狀態、個人生活習慣、飲食等問卷資料,測量身高、體重及血液生化值,而區域的脈絡因子是收集基隆各行政區教育程度、婚姻狀態、及人口密度等人口社會學資料。研究設計是以病例對照指標家族研究 (case-control proband family)為主,共有4,499個病例組個案及16,932個對照組個案,利用非線性混合模式 (Nonlinear mixed model)及貝氏分析 (Bayesian Analysis)於多階層模式之統計方法,估計肥胖與家族聚集、個人層級、及區域層級因素之危險對比值 (Odds ratio)及95%信賴區間。
結果
體重過重及肥胖的盛行率在年紀大、男性、教育程度低、離婚或喪偶者較高。高教育程度比例較低的區域、人口密度較高的區域,肥胖的盛行率也較高。病例指標家族比對照指標家族肥胖聚集的相對危險值為1.29 (95%信賴區間1.29-1.30),在高教育程度比例低的區域、離婚或喪偶率高的區域、人口密度高的區域,肥胖家族聚集的相對危險值分別為1.39 ( 95%信賴區間: 1.36-1.41)、1.36 (95%信賴區間: 1.35-1.38)、及1.34 (95%信賴區間: 1.32-1.35)。肥胖與家族聚集、個人層級因素、及區域層級因素之相關性分析中,在調整多變項後,家族聚集的危險對比值是有顯著意義的,其危險對比值為 2.31 (95%信賴區間: 1.67-3.20),且在未婚者比已婚、離婚或喪偶者高 (危險對比值2.31(95%信賴區間: 1.67-3.02) vs.1.52 (95%信賴區間: 1.10-2.11) vs.1.44 (95%信賴區間: 1.04-2.00));在高教育程度高的區域較低的區域高 (危險對比值2.68(95%信賴區間: 1.94-3.71) vs.2.31 (95%信賴區間: 1.67-3.20))。利用貝氏方法做多階層的分析測試不同的模式,發現在同時考慮不同家族間、不同區域間、及區域對家族聚集無法解釋的異質性影響下,所得到的模式適合度比較好。
結論
本研究結合了家族病例對照指標個案之研究設計和多階層模式結合個人及社會脈絡因素,證明在調整個人因子及社會脈絡因子下,肥胖有強烈家族聚集之現象。就脈絡層次而言,在不同的家族和不同的區域間,個人肥胖的危險是具有異質性的,而且肥胖家族聚集的情形也會受到脈絡因素的影響,如區域的教育程度。未來若能探討更多脈絡因素(如社會經濟因素指標)對於肥胖家族聚集的影響,並討論是否針對脈絡因素做介入性措施,對肥胖的防治將更有幫助。對於區域的社會相關脈絡因素之探討,若可依照區域發展的地理人文背景與有興趣研究的社會脈絡因素相互考慮,是未來可繼續努力的方向。
zh_TW
dc.description.abstractBackground and Study Purpose
Obesity is increasing in prevalence worldwide and is known to be associated with morbidity and mortality in relation to cardiovascular disease. The etiology of obesity is complex and is not completely understood. A large portion of epidemiologic research put emphasis on individual-level risk factors. However, group-level or macro-level variables, so-called contextual factors, also play an important role through interaction with individual factors. There are also limited studies taking both familial aggregation and contextual factors of obesity into accounts. Therefore, the aim of the present study is to explore the association between obesity and familial aggregation and risk factors at individual-level and area-level by conducting a community-based study with multi-level model analysis.
Materials and methods
A total of 74,833 subjects with aged 20-69 years old are identified from Keelung community-based integrated screening program (KCIS) between 1999 and 2005. By dint of KCIS study, the study design is based on a case-control proband family sampling. A total of 4,499 cases and 16,932 controls were identified. Data of household registration, demographics including education and marital status, lifestyle, and diet were collected. Anthropometric measurements were taking and the criteria of obesity was defined as body mass index≧27 kg/m2. Area-level contextual factors including high educational rate, divorce or widowed rate, and population density separated with tertile were collected from seven administrative districts of Keelung City. We applied nonlinear mixed model and Bayesian analysis for multi-level analysis to investigate the odds ratios and 95% confidence interval of familial aggregation and different level factors for obesity.
Results
The prevalence rate of overweight and obesity were higher in aged, male, low educated, divorced or widowed subjects, the least tertile of high education rate, and the most tertile of population density among areas. The relative risk of familial aggregation in association with obesity among relatives in case proband families compared with control proband families was 1.29 (95% CI: 1.29-1.30). The relative risk of familial aggregation with obesity in the least tertile of high education rate, the most tertile of divorce rate, and the most tertile of population density were 1.39 (95% CI: 1.36-1.41), 1.36 (95%CI: 1.35-1.38), and 1.34 (95% CI: 1.32-1.35), respectively. The risk for obesity among relatives in case versus control proband families was 2.31 (95%CI: 1.67-3.20) after controlling for significant environmental factors, and it was modified by individual marital status and high education rate of area. The odds ratio was 1.52 (95%CI:1.10-2.11) in married subjects, 1.44 (95%CI:1.04-2.00) in divorced or widowed subjects, and 2.68 (95%CI:1.94-3.71) in the least tertile of high education rate, respectively. When Bayesian analysis for multi-level model is applied, the random effects considering unexplained heterogeneity among different families, different areas, and different area effect on familial aggregation are taken into account with better goodness of fit than others.
Conclusion
The present study confirmed a strong tendency to familial aggregation for obesity by using the case-control proband family study with a multi-level model approach. The risk of obesity was heterogeneous among families and areas by using multi-level analysis, and familial aggregation of obesity was also affected by contextual factors. The selection of more contextual factors from different levels and the selection of the appropriate contextual factors are needed in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:14:13Z (GMT). No. of bitstreams: 1
ntu-97-R95846006-1.pdf: 973899 bytes, checksum: 653bd0edccf4e30d966f6062e6104eb0 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents目錄
圖目錄 2
表目錄 3
Abstract 5
中文摘要 8
第一章 前言 10
第一節 研究背景 10
第二節 研究目的 14
第二章 文獻回顧 15
第一節 肥胖家族聚集研究 15
第二節 肥胖之個人層次相關因子 16
第三節 肥胖與社會脈絡因素 20
第三章 研究材料與方法 22
第一節 研究族群 22
第二節 研究設計 22
第三節 資料收集 23
第四節 肥胖定義 24
第五節 統計方法 25
第四章 結果 30
第一節 肥胖的盛行率之描述性分析 30
第二節 比較病例組及對照組基本資料之差異 31
第三節 肥胖家族聚集的描述性分析 31
第四節 家族聚集與環境因素對肥胖的影響 32
第五節 貝氏分析 (Bayesian Analysis)於多階層模式 (Hierarchical Model)之建構 33
第五章 討論 38
第一節 家族聚集及社會經濟脈絡因子對肥胖的影響 38
第二節 方法學的探討 40
第六章 研究限制 42
第七章 結論 43
參考資料 44

圖目錄
Figure 3.1 Flow chart of study design for obesity 52
Figure 4.1 Distribution of educational level by area 53
Figure 4.2 Distribution of marital status by area 54
Figure 4.3 Distribution of population density by area 55
Figure 4.4 Model R1 : Random intercept of family 56
Figure 4.5 Model R2: Random intercept of family and area 57
Figure 4.6 Model R3: Random intercept of family and random slope of area 58
Figure 4.7 Model R4: Random intercept of family and area and random slope of area 59

表目錄
Table 3.1 Frequency of family number in each household 60
Table 4.1 Prevalence rates of overweight and obesity by age, calendar year, and gender in total attendants 61
Table 4.2 Prevalence rates of overweight and obesity by educational level and marital status 62
Table 4.3 Prevalence rates of overweight and obesity by contextual factors with education, marital status and area63
Table 4.4 Comparison of demographics between case and control group (N=21431) 64
Table 4.5 Comparison of lifestyle factors and personal medical history between case and control group (N=21431) 65
Table 4.6 Distribution of number of obesity among relatives in each household 66
Table 4.7 Distribution of number of obesity among relatives in each household by area 67
Table 4.8 Distribution of number of obesity among relatives in each household by contextual factors with area education 68
Table 4.9 Distribution of number of obesity among relatives in each household by contextual factors with marital status 69
Table 4.10 Distribution of number of obesity among relatives in each household by contextual factors with population density 70
Table 4.11 Univariate analysis for familial aggregation and environmental factors associated with obesity 71
Table 4.12 Interaction assessment of each variable at individual level with familial aggregation 72
Table 4.13 Interaction assessment of socioeconomic factors at area level with familial aggregation 73
Table 4.14 Multivariate analysis for familial aggregation, environmental factors, and interaction 74
Table 4.15 Multivariate analysis for familial aggregation, environmental factors, and interaction 75
Table 4.16(1) Multilevel analysis for familial aggregation and environmental factors 76
Table 4.16(2) Multilevel analysis for familial aggregation and environmental factors 77
Table 4.16(3) Multilevel analysis for familial aggregation and environmental factors 78
Table 5.1 Prevalence rates of overweight and obesity by age, year, and gender in at least 2 attendants in the same household 79
Table 5.2 Prevalence rates of overweight and obesity by individual education, marital status, and area in at least 2 attendants in the same household 80
dc.language.isozh-TW
dc.subject肥胖zh_TW
dc.subject家族聚集zh_TW
dc.subject病例對照指標家族研究zh_TW
dc.subject脈絡因素zh_TW
dc.subject多階層分析zh_TW
dc.subjectobesityen
dc.subjectmulti-level analysisen
dc.subjectcontextual factorsen
dc.subjectcase-control proband family studyen
dc.subjectfamilial aggregationen
dc.title多階層模式之應用於肥胖之家族聚集zh_TW
dc.titleA Multi-level Model for Familial Aggregation of Obesityen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor黃國晉
dc.contributor.oralexamcommittee邱泰源,嚴明芳
dc.subject.keyword肥胖,家族聚集,病例對照指標家族研究,脈絡因素,多階層分析,zh_TW
dc.subject.keywordobesity,familial aggregation,case-control proband family study,contextual factors,multi-level analysis,en
dc.relation.page80
dc.rights.note未授權
dc.date.accepted2008-07-30
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
951.07 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved