請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26501完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨老師 | |
| dc.contributor.author | Ping-Hsi Yang | en |
| dc.contributor.author | 楊秉熹 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:12:43Z | - |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-29 | |
| dc.identifier.citation | 胡育誠 (民92):生技醫藥。載於吳文騰(主編):生物產業技術概論(1-30頁)。新竹:國立清華大學出版社。
Andersen, D.C. and Krummen, L. Recombinant protein expression for therapeutic applications. Current Opinion in Biotechnology 13 (2002), pp. 117-123. Bellamy, W., Takase, M., Wakabayashi, H., Kawase, K. and Tomita, M. Antibacterial spectrum of lactoferricin-B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. Journal of Applied Bacteriology 73 (1992a), pp. 472-479. Bellamy, W., Takase, M., Yamauchi, K., Wakabayashi, H., Kawase, K. and Tomita, M. Identification of the bactericidal domain of lactofferin. Biochimica et Biophysica Acta 1121 (1992b), pp. 130-136. Bellamy, W., Yamauchi, K., Wakabayashi, H., Takase, M., Takakura, N., Shimamura, S. and Tomita, M. Antifungal Properties of lactoferricin-B, peptide derived from the N-terminal region of bovine lactoferrin. Letters in Applied Microbiology 18 (1994), pp. 230-233. Dennis, J. W. N-linked oligosaccharide processing and tumor cell biology. Seminar in Cancer Biology 2 (1991), pp. 411-420. Di Biase, A.M., Pietrantoni, A., Tinari, A., Siciliano, R., Valenti, P., Antonini, G., Seganti, L. and Superti, F. Heparin-interacting sites of bovine lactoferrin are involved in anti-adenovirus activity. Journal of Medical Virology 69 (2003), pp. 495-502. Derman, A.I., Prinz, W.A., Belin, D. and Beckwith, J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262 (1993), pp. 1744-1747. Farnaud, S., Spiller, C., Moriarty, L.C., Patel, A., Gant, V., Odell, E.W. and Evans, R.W. Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiology Letters 233 (2004), pp. 193-199. Feng, X., Wang, J., Shan, A., Teng, D., Yang, Y., Yao, Y., Yang, G., Shao, Y., Liu, S. and Zhang, F. Fusion expression of bovine lactoferricin in Escherichia coli. Protein Expression and Purification 47 (2006), pp. 110-117. Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A. and Ruddle, F.H. Genetic-transformation of mouse embryos by micro-injection of purified DNA. Proceedings of the National Academy of Sciences of the United States of America-Biological Sciences 77 (1980), pp. 7380-7384. Gordon, K., Lee, E., Vitale, J.A., Smith, A.E., Westphal, H. and Hennighausen, L. Production of human-tissue Plasminogen-activator in transgenic mouse milk. Bio/Technology 5 (1987), pp. 1183-1187. Halloran, M.C., Sato-Maeda, M., Warren, J.T., Su, F.Y., Lele, Z., Krone, P.H., Kuwada, J.Y. and Shoji, W. Laser-induced gene expression in specific cells of transgenic zebrafish. Development 127 (2000), pp. 1953-1960. Higashijima, S., Okamoto, H., Ueno, N., Hotta, Y. and Eguchi, G. High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Developmental Biology 192 (1997), pp. 289-299. Houdebine, L.M. Transgenic animal bioreactors. Transgenic Research 9 (2000), pp. 305-320. Huang, C.J., Jou, T.S., Ho, Y.L., Lee, W.H., Jeng, Y.T., Hsieh, F.J. and Tsai, H.J. Conditional expression of a myocardium-specific transgene in zebrafish transgenic lines. Developmental Dynamics 233 (2005), pp. 1294-1303. Hwang, G.L., Muller, F., Rahman, M.A., Williams, D.W., Murdock, P.J., Pasi, K.J., Goldspink, G., Farahmand, H. and Maclean, N. Fish as bioreactors: Transgene expression of human coagulation factor VII in fish embryos. Marine Biotechnology 6 (2004), pp. 485-492. Hwang, P.M., Zhou, N., Shan, X., Arrowsmith, C.H. and Vogel, H.J. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37 (1998), pp. 4288-4298. Jenssen, H., Andersen, J.H., Uhlin-Hansen, L., Gutteberg, T.J. and Rekdal, O. Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate. Antiviral Research 61 (2004), pp. 101-109. Kim, H.K., Chun, D.S., Kim, J.S., Yun, C.H., Lee, J.H., Hong, S.K. and Kang, D.K. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli. Applied Microbiology and Biotechnology 72 (2006), pp. 330-338. Kretzmer, G. Industrial processes with animal cells. Applied Microbiology and Biotechnology 59 (2002), pp. 135-142. Krovel, A.V. and Olsen, L.C. Expression of a vas :: EGFP transgene in primordial germ cells of the zebrafish. Mechanisms of Development 116 (2002), pp. 141-150. Larrick, J.W. and Thomas, D.W. Producing proteins in transgenic plants and animals. Current Opinion in Biotechnology 12 (2001), pp. 411-418. Lin, T.P. Microinjection of mouse eggs. Science 151 (1966), pp. 333-337. Lonnerdal, B. and Iyer, S. Lactoferrin - molecular-structure and biological function. Annual Review of Nutrition 15 (1995), pp. 93-110. Mader, J.S., Richardson, A., Salsman, J., Top, D., de Antueno, R., Duncan, R. and Hoskin, D.W. Bovine lactoferricin causes apoptosis in Jurkat T-leukemia cells by sequential permeabilization of the cell membrane and targeting of mitochondria. Experimental Cell Research 313 (2007), pp. 2634-2650. Mader, J.S., Salsman, J., Conrad, D.M. and Hoskin, D.W. Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines. Molecular Cancer Therapeutics 4 (2005), pp. 612-624. Mattsby-Baltzer, I., Roseanu, A., Motas, C., Elverfors, J., Engberg, I. and Hanson, L.A. Lactoferrin or a fragment thereof inhibits the endotoxin-induced interleukin-6 response in human monocytic cells. Pediatric Research 40 (1996), pp. 257-262. Morita, T., Yoshizaki, G., Kobayashi, M., Watabe, S. and Takeuchi, T. Fish eggs as bioreactors: the production of bioactive luteinizing hormone in transgenic trout embryos. Transgenic Research 13 (2004), pp. 551-557. Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C. and Evans, R.M. Dramatic growth of mice that develop from eggs micro-injected with metallothioneine-growth hormone fusion genes. Nature 300 (1982), pp. 611-615. Salamone, D., Baranao, L., Santos, C., Bussmann, L., Artuso, J., Werning, C., Prync, A., Carbonetto, C., Dabsys, S., Munar, C., Salaberry, R., Berra, G., Berra, I., Fernandez, N., Papouchado, M., Foti, M., Judewicz, N., Mujica, I., Munoz, L., Alvarez, S.F., Gonzalez, E., Zimmermann, J., Criscuolo, M. and Melo, C. High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. Journal of Biotechnology 124 (2006), pp. 469-472. Simons, J.P., McClenaghan, M. and Clark, A.J. Alteration of the quality of milk by expression of sheep beta-lactoglobulin in transgenic mice. Nature 328 (1987), pp. 530-532. Simons, J.P., Wilmut, I., Clark, A.J., Archibald, A.L., Bishop, J.O. and Lathe, R. Gene-transfer into sheep. Bio/Technology 6 (1988), pp. 179-183. Stewart, E.J., Aslund, F. and Beckwith, J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. Embo Journal 17 (1998), pp. 5543-5550. Swartz, J.R. Advances in Escherichia coli production of therapeutic proteins. Current Opinion in Biotechnology 12 (2001), pp. 195-201. Tomiya, N., Narang, S., Lee, Y.C. and Betenbaugh, M.J. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconjugate Journal 21 (2004), pp. 343-360. Vorland, L.H., Ulvatne, H., Rekdal, O. and Svendsen, J.S. Initial binding sites of antimicrobial peptides in Staphylococcus aureus and Escherichia coli. Scandinavian Journal of Infectious Diseases 31 (1999), pp. 467-473. Wall, R.J., Kerr, D.E. and Bondioli, K.R. Transgenic dairy cattle: Genetic engineering on a large scale. Journal of Dairy Science 80 (1997), pp. 2213-2224. Wang, Y.H., Chen, Y.H., Lin, Y.J. and Tsai, H.J. Spatiotemporal expression of zebrafish keratin 18 during early embryogenesis and the establishment of a keratin 18 : RFP transgenic line. Gene Expression Patterns 6 (2006), pp. 335-339. Ward, P.P., Paz, E. and Conneely, O.M. Multifunctional roles of lactoferrin: a critical overview. Cellular and Molecular Life Sciences 62 (2005), pp. 2540-2548. Warga, R.M. and Nusslein-Volhard, C. Origin and development of the zebrafish endoderm. Development 126 (1999), pp. 827-838. Yoo, Y.C., Watanabe, S., Watanabe, R., Hata, K., Shimazaki, K. and Azuma, I. Bovine lactoferrin and Lactoferricin (TM) inhibit tumor metastasis in mice. Advances in Lactoferrin Research 443 (1998), pp. 285-291. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26501 | - |
| dc.description.abstract | 斑馬魚 (zebrafish) 成為新興的生物反應器,因為生命周期較短,終年可產卵,產卵數多,基因轉殖容易,養殖設備簡單且成本便宜。Bovine lactoferricin具有廣泛的抗微生物活性,包括細菌與真菌。另外也具有抗病毒、抗癌細胞的活性,還有調節免疫的能力。於是欲使用斑馬魚作為生物反應器,於斑馬魚體及卵中來製造重組 lactoferricin 蛋白質,將來能提供養殖、畜產與醫療的用途。本研究先構築由β-actin promoter來驅動lactoferricin-GFP基因的片段,然後透過顯微注射將此片段轉殖到2000個左右斑馬魚胚胎中,並利用綠螢光篩選出500隻可能之G0親代。育成後與野生型配對,在其中篩選出6隻能產下綠螢光F1的G0,接著使用PCR檢測其中10隻轉殖魚F1胚胎的genomic DNA,可夾取出776 bp轉殖進來的lactoferricin-GFP片段。使用Western blot偵測50隻轉殖魚F1胚胎的total proteins,可偵測到29.2 KD 的lactoferricin-GFP重組蛋白質。在6個轉殖品系中,挑選ZBL-5品系的轉殖魚F1與野生型配對,產下的 F2子代胚胎在1- cell時已可觀察到有綠螢光的表現,隨時間增加全身綠螢光的表現有持續累積的現象,並且胚胎中表現綠螢光的比例為50.9% ± 2% (78/162, 64/121, 360/695),顯示為穩定的heterozygotic 轉殖魚品系。此轉殖魚產生之lactoferricin-GFP蛋白質,可經外加pepsin 切下產生具有抗菌活性的 functional domain,經實驗結果得知ㄧ隻72 hpf 表現綠螢光的F2轉殖魚胚胎所含有的lactoferricin,在agar plate顯示出其殺大腸桿菌 (Escherichia coli)、遲鈍愛德華氏菌(Edwardsiella tarda) 與親水性產氣單胞菌(Aeromonas hydrophila) 的效力分別相當於0.1μg ampicillin、0.03μg ampicillin 與0.5 μg tetracycline的劑量。並且將50隻帶有lactoferricin-GFP的胚胎 (72hpf) 餵食斑馬魚,八小時後浸泡於E. tarda 菌液中進行感染實驗。發現七天後餵食相同數量 wild-type胚胎的斑馬魚存活率由0% (n=8) 提升為87.5%(n=8)。顯示餵食帶有lactoferricin-GFP的胚胎,確實可在腸胃道發揮其生物活性幫助斑馬魚抵抗E. tarda的感染、降低魚隻致死率。總結,本研究得到可以產製具有功能的lactoferricin外來蛋白質之穩定遺傳品系,將來可應用在水產養殖、畜牧與醫療等用途。 | zh_TW |
| dc.description.abstract | Zebrafish is an excellent alternative animal for using as a bioreactor because of short generation time, light-induced spawning, high fecundity, easy manipulation of gene transfer, and cheap culture system. Bovine lactoferricin possesses antimicrobial activity against a wide range of microorganisms, antiviral, antitumor and immunomodulatory activities. In this study, we generated transgenic zebrafish as a bioreactor to produce recombinant lactoferricin through whole body and eggs. An expression plasmid, in which lactoferricin-GFP was driven by zebrafish β-actin promoter, was microinjected into 2000 one-celled embryos. We selected 500 GFP-positive eggs as G0 transgenic founders, and crossed with wild- type individually. In total, 6 G0 lines which produced GFP-positive F1 offspring were generated. A 776-bp PCR-product was amplified, corresponding the amplification of lactoferricin-GFP transgene, from the genomic DNA extracted from 10 F1 transgenic fish. Furthermore, a recombinant lactoferricin-GFP protein with molecular masses of 29.2 KDa was positive hybridization with GFP antiserum, when the total proteins extracted from 50 F1 transgenic fish were subjected to western blot analysis. We chose one of the 6 F1 transgenic lines, ZBL-5, to cross with wild-type zebrafish and found that GFP was ubiquitously expressed in whole embryo of F2, starting from 1-cell stage. The GFP expression rate of the F2 transgenic embryos examined was 50.9 ± 2% (78/162, 64/121, 360/695), indicating that ZBLFB-5 is a stable heterozygotic transgenic line. In addition, in agar-well diffusion assay, we found thatthe bactericidal functional domain was enabled to release from lactoferricin-GFP fusion protein produced by transgenic zebrafish after it was digested with additional pepsin, and showed bactericidal efficacy. The bactericidal efficacy against Escherichia coli and Edwardsiella tarda from one heterozygotic embryo were equivalent to 0.1 μg and 0.03μg ampicillin respectively; against Aeromonas hydrophila was equivalent to 0.5 μg tetracycline. After we fed the transgenic embryos to zebrafish, fish were infected by immersion in water containing E. tarda. The survival rate after 7 days infection of zebrafish fed with 50 transgenic embryos was greatly higher than that fed with wild-type embryos, 87.5% (n=8) versus 0% (n=8), suggesting that feeding the lactoferricin-GFP containing transgenic embryos enables to protect fish against E. tarda infection. In conclusion, we generated stable transgenic zebrafish lines that enable to produce the functional recombinant lactoferricin in this study. This strategy may be highly potential application for aquaculture, pasturage and therapeutic treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:12:43Z (GMT). No. of bitstreams: 1 ntu-97-R95b43004-1.pdf: 3756723 bytes, checksum: 5f47673797039c80bcce8df3c734fb1d (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 目 錄
中文摘要…………………………………………………………………………. 1 英文摘要…………………………………………………………………………. 3 前言………………………………………………………………………………. 5 材料與方法……………………………………………………………………… 12 結果……………………………………………………………………………… 22 討論……………………………………………………………………………… 29 參考文獻………………………………………………………………………… 35 圖………………………………………………………………………………… 41 附錄……………………………………………………………………………… 51 | |
| dc.language.iso | zh-TW | |
| dc.subject | 生物反應器 | zh_TW |
| dc.subject | 斑馬魚 | zh_TW |
| dc.subject | 重組蛋白質 | zh_TW |
| dc.subject | lactoferricin | en |
| dc.subject | zebrafish | en |
| dc.subject | bioreactor | en |
| dc.title | 基因轉殖斑馬魚作為生物反應器表現外源重組蛋白質 | zh_TW |
| dc.title | Zebrafish as Bioreactors to Produce Recombinant Protein | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李國誥,鄭石通,楊啟伸,方祖熙 | |
| dc.subject.keyword | 斑馬魚,生物反應器,重組蛋白質, | zh_TW |
| dc.subject.keyword | zebrafish,bioreactor,lactoferricin, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-07-31 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
