Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26500
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川(Kuo-Chuan Ho)
dc.contributor.authorYuan-Ruei Changen
dc.contributor.author張原睿zh_TW
dc.date.accessioned2021-06-08T07:12:41Z-
dc.date.copyright2008-08-05
dc.date.issued2008
dc.date.submitted2008-07-29
dc.identifier.citation[1] B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye sensitized colloidal TiO2 film“, Nature 353 (1991) 737.
[2] Mohammad K. Nazeeruddin, Filippo De Angelis, Simona Fantacci, Annabella Selloni, Guido Viscardi, Paul Liska, Seigo Ito, Bessho Takeru, and Michael Grätzel, “Combined experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers,” J. Am. Chem. Soc. 127 (2005) 16835.
[3] F. Kasten and A. T. Young, “Revised Optical Air Mass Tables and Approximation Formula,” Appl. Opti. 28 (1989) 4735.
[4] D. Chapin, C. Fuller, and G. Pearson, “A new silicon P-N junction photocell for converting solar radiation into electric power”, J. Appl. Phys. 25 (1954) 676.
[5] M. A. Green, K. Emery, and D. L. King, Progress in Photovoltaics 13 (2005) 49.
[6] W. D. Callister, Jr, Materials Science and Engineering: An Introduction, 5th ed., pp. 610, 621-622, John Wiley & Sons, Inc., New York (1999).
[7] J.-S. Hsieh, Solar Energy Engineering, pp. 366-372, Prentice-Hall, New Jersey (1986).
[8] A. Luaue and S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, Chichester (2004).
[9] M. A. Contreras, K. Ramanathan, J. Abushama, F. Hasoon, D. L. Young, B. Egaas. and R. Noufi, “Diode characteristics in state of theart ZnO/CdS/Cu (In1-xGax)Se2 solar cells,” Prog. Photovolt: Res. Appl. 13 (2005) 209.
[10] 魏國修, “利用TiO2薄膜光電催化亞甲基藍去色之反應動力學探討,” pp. 7-8, 國立臺灣大學, 臺北 (1998).
[11] B. J. Tufts, I. L. Abrahams, P. G. Santangelo, G. N. Ryba, L. G. Casagrande, and N. S. Lewis, “ Chemical modification of n-GaAs electrode with Os3+ gives a 15% efficient solar cell,” Nature 326 (1987) 861..
[12] T. Miyasaka, Y. Kijitory, T. N. Murakami, and N. Kawashima, “Fabrication of dye-sensitized plastic film electrodes for flexible solar cells based on electrophoretic deposition techniques,” Proc. of SPIE 5215 (2004) 219.
[13] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos and M. Grätzel, “Conversion of light to electricity by cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruhenium(II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” J. Am. Chem. Soc. 115 (1993) 6382.
[14] O. Kohle, S. Ruile, and M. Grätzel, “Ruthenium(II) charge-transfer sensitizers containing 4,4’-dicarboxy-2,2’-bipyridine. Synthesis, properties, and bonding mode of coordinated thio- and selenocyanates,” Inorg. Chem. 35 (1996) 4779.
[15] S. Ruile, O. Kohle, P. Pechy, and M. Grätzel, “Novel sensitizers for photovoltaic cells. Structural variations of Ru(II) complexes containnnning 2,6-bis(1-methylbenzimidazol-2-yl) pyridine,” Inorg. Chim. Acta 261 (1997) 129.
[16] V. Shklover, M. K. Nazeeruddin, S. M. Zakeeruddin, C. Barbe, A. Kay, T. Haibach, W. Steurer, R. Hermann, H.-U. Nissen, and M. Grätzel, “Structure of nanocrystalline TiO2 powders and precursor to their highly efficient photosensitizer,” Chem. Mater. 9 (1997) 430.
[17] R. Amadelli, R. Argazzi, C. A. Bignozzi, and F. Scandola, “Design of antenna-sensitizer polynuclear complexes. Sensitization of titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22-,” J. Am. Chem. Soc. 112 (1990) 7099.
[18] R. Argazzi and C. A. Bignozzi, “Remote interfacial electron transfer from supramolecular sensitizers,” Inorg. Chem. 36 (1997) 2.
[19] R. Grunwald and H. Tributsch, “Mechanisms of instability in Ru based dye sensitization solar sells,” J. Phys. Chem. B 101 (1997) 2564.
[20] I. Bedja, S. Hotchandani, and P. V. Kamat, “Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semionductor films and their sensitization with bis(2,2'-bipyridine) (2,2'-bipyridine -4,4'-dicarboxylic acid)ruthenium(11) complex,” J. Phys. Chem. 98 (1994) 4133.
[21] D. Liu, G. L. Hug, and P. V. Kamat, “Photochemistry on surfaces.inter-molecular energy and electron transfer processes between excited ru(bpy)32+ and aggregates of cresyl violet on SiO2 and SnO2 colloids,” J. Phys. Chem. 99 (1995) 16768.
[22] G. Redmond and D. Fitzmaurice, “Visible light sensitization by cis-bis(thioc yanato) bis (2,2’- bipyridyl-4,4’- dicarboxylato) ruthenium(II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques,” Chem. Mater. 6 (1994) 686.
[23] P. V. Kamat, I. Bedja, S. Hotchandani, and L. K. Patterson, “Photosensitization of nanocrystalline semiconductor films. Modulation of electron transfer between excited ruthenium complex and SnO2 nanocrystallites with an externally applied bias,” J. Phys. Chem. 100 (1996) 4900.
[24] H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A. Hagfeldt, and S.-E. Lindquist, “High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes,” J. Phys. Chem. B 101 (1997) 2598.
[25] N.G. Park, J. van de Lagemaat, and A.J. Frank, “Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells.” J. Phys. Chem. B104 (2000) 8989.
[26] S. D. Burnside, V. Shklover, C. Barbe, P. Comte, F. Arendse, K. Brooks, and M. Grätzel, “Self-organization of TiO2 nanoparticles in thin films,” Chem. Mater. 10 (1998) 2419.
[27] D. M. Antonelli and J. Y. Ying, “Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method,” Angew Chem. Int. Edit. 18 (1995) 2014.
[28] C. J. Barbé, F. Árendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic application,” J. Am. Ceram. Soc. 80 (1997) 3157.
[29] J. Weidmann, T. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, and F. Koch, “Influence of oxygen and water related surface defects on the dye sensitized TiO2 solar cell,” Sol. Energ. Mat. Sol. Cells 56 (1999) 153.
[30] A. Hagfeldt and M. Grätzel, “Light-induced redox reactions in nanocrystalline systems,” Chem. Rev. 95 (1995) 49.
[31] A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Acc. Chem. Res. 33 (2000) 269.
[32] Y. Tachibana, J. E. Moser, M. Grätzel, D. R. Klug, and J. R. Durrant, “Subpicosecond interfacial charges separation in dye-sensitized nanocrystalline titanium dioxide films,” J. Phys. Chem. 100 (1996) 20056.
[33] T. Hannappel, B. Burfeindt, W. Storck, and F. Willig, “Measurement of ultrafast photoinduced electron transfer from chemically Anchored Ru-dye molecules into empty electronic states in a colloiddal anatase TiO2 film,” J. Phys. Chem. B 101 (1997) 6799.
[34] R. J. Ellingson, J. B. Asbury, S. Ferrere, H. N. Ghosh, J. R. Sprague, T. Lian, and A. J. Nozik, “Dynamics of electron injection in nanocrystalline titanium dioxide films sensitized with [Ru(4,4’-dicarboxy-2,2’ -bipyridine)2(NCS)2] by infrared transient absorption,” J. Phys. Chem. B 102 (1998) 6455.
[35] A. F. Nogueira, C. Longo, and M. A. D. Paoli, “Polymers in dye-sensitized solar cells: overview and perspectives,” Coordin. Chem. Rev. 248 (2004) 1455.
[36] G. Schlichthörl, S. Y. Huang, J. Sprague, and A. J. Frank, “Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy,” J. Phys. Chem. B 101 (1997) 8141.
[37] K. Schwarzburg and F. J. Willig, “Origin of photovoltage and photocurrent in the nanoporous dye-sensitized electrochemical solar cell,” J. Phys. Chem. B 103 (1999) 5743.
[38] D. Cahen, G. Hodes, M. Grätzel, J. F. Guillemoles, and I. Riess, “Nature of photovoltaic action in dye-sensitized solar cells,” J. Phys. Chem. B 104 (2000) 2053.
[39] S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel, and A. J. Frank, “Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells,” J. Phys. Chem. B 101 (1997) 2576.
[40] Z. Kebede and S. E. Lindquist, “The obstructed diffusion of the I3- ion in messoscopic TiO2 membranes”, Sol. Energ. Mat. Sol. Cells 51 (1998) 291.
[41] Y. Liu, A. Hagfeldt, X. R. Xiao, and S. E. Lindquist, “Investigation of influence of redox species on the interfacial energetics of a dye -sensitized nanoporous TiO2 solar cell”, Sol. Energ. Mat. Sol. Cells 55 (1998) 267.
[42] C. A. Kelly, F. Farzad, D. W. Thompson, J. M. Stipkala, and G. J. Meyer, “Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2,” Langmuir 15 (1999) 7047.
[43] J. Bard and L. R. Faulkner, “Electrochemical methods: fundamentals and applications,” 2nd ed., p. 371, John Wiley & Sons, Inc., New York (2001).
[44] 林明賢, “HEMA系膠態高分子電解質之製備與應用,” pp. 123-141, 國立臺灣大學, 臺北 (2001).
[45] D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, and H. Minoura, “Room-temperature synthesis of porous nanoparticulate TiO2 films for flexible dye-sensitized solar cells,” Adv. Funct. Mater. 16 (2006) 1228.
[46] A. D. Pasquier, “An approach to laminated flexible dye sensitized solar cells.” Electrochimica Acta 52 (2007) 7469.
[47] Y. Kijitori, M. Ikegami, and T. Miyasaka, “Highly efficient plastic dye -sensitized photoelectrodes prepared by low-temperature binder-free coating of mesoscopic titania pastes,” Chemistry Letters 36 (2007) 190.
[48] C. Longo, J. Freitas, and M. D. Paoli, “Performance and stability of TiO2/dye solar cells assembled with flexible electrodes and a polymer electrolyte,” J. Photochem. Photobio. A: Chem. 159 (2003) 33.
[49] D. Gutiérrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernández-Fen-ollosa, X. Domènech, and J. A. Ayllón, “New low-temperature preparation method of the TiO2 porous photoelectrode for dye-sensitized solar cells using UV irradiation,” J. Photochem. Photobio. A: Chem. 175 (2005) 165.
[50] T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, “High efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of TiO2 photoelectrodes,” Chem. Commun. (2007) 4767.
[51] T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, “Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation,” J. Photochem. Photobio. A: Chem. 164 (2004) 187.
[52] J. Nemoto, M. Sakata, T. Hoshi, H. Ueno, and M. Kaneko, “All plastic dye-sensitized solar cell using a polysaccharide film containing excess redox electrolyte solution,” J. Electroanal. Chem. 599 (2007) 23.
[53] S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, “Flexible dye -sensitized solar cells by 28 GHz microwave irradiation.,” J. Photochem. Photobio. A: Chem. 164 (2004) 93.
[54] D. Zhang, T. Yoshida, K. Furuta, and H. Minoura, “Hydrothermal preparation of porous nano-crystalline TiO2 electrodes for flexible solar cells,” J. Photochem. Photobio. A: Chem. 164 (2004) 159.
[55] H. LindstrÖm, A. Holmberg, E. Magnusson, L. Malmqvist, and A. Hagfeldt, “A new method to make dye-sensitized nanocrystalline solar cells at room temperature,” J. Photochem. Photobio. A: Chem. 145 (2001) 107.
[56] J. Halme, J. Saarinen, and P. Lund, “Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates,” Solar Energy Materials & Solar Cells 90 (2006) 887.
[57] D. Zhang, T. Yoshida, and H. Minoura, “Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface,” Adv. Mater. 15 (2003) 814.
[58] H. Kim, R.C. Y. Auyeung, M. Ollinger, G.. P. Kushto, Z. H. Kafafi, and A. Piqué, “Lacer-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells,” Appl. Phys. A 83 (2006) 73.
[59] M. DÜrr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles, “Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers,” Nature Materials 4 (2005) 607.
[60] T. Miyasaka, Y. Kijitori, T. N. Murakami, and N. Kawashima, “Fabrication of dye-sensitized plastic film electrodes for flexible solar cells based on electrophoretic deposition techniques,” Proc. Of SPIE Vol. 5215.
[61] T. Miyasaka, and Y. Kijitori, “Low-temperature fabrication of dye -sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers,” J. Electrochem. Soc. 151 (2004) A1767.
[62] I. Zhitomirsky, “Cathodic electrodeposition of ceramic and organoceramic materials,” Advances in colloid and interface science 97 (2002) 279.
[63] O. O. Van der Biest and L. J. Vandeperre, “Electrophoretic deposition of msterials,” Annu. Rev. Mater. Sci. 29 (1999) 327.
[64] N. Koura, T. Tsukamota, H. Shoji, and T. Hotta, “Preparation of various oxide films by an electrophoretic deposition method: A study of the mechanism,” Jpn. J. Appl. Phys. 34 (1995) 1643.
[65] J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc. 83 (2000) 41.
[66] C. P. Gutierrez, J. R. Mosley, and T. C. Wallace, “Electrophoretic deposition: a versatile coating method,” J. Electrochem. Soc. 109 (1962) 923.
[67] I. Zhitomirsky and L. Cal-Or, “Electrophoretic deposition of hydroxyapatite,” Journal of materials science: materials in medicine 8 (1997) 213.
[68] A. Formeto, L. Montanaro, and M. V. Swain, “Micromechanical characterization of electrophoretic deposited green films,” J. Am. Ceram. Soc. 82 (1999) 3251.
[69] N. Q. Minh and T. Takahashi, “Science and technology of ceramic fuel cells,” P 182, Elsevier, Amsterdam, (1995).
[70] T. Uchnikoshi, K. Ozawa, B. Hatton, and Y. Sakka, “Dence, bubble-free, ceramic deposits from aqueous suspensions by electrophoretic deposition,” J. Mater. Res. 16 (2001) 321.
[71] B. E. Russ and J. B. Talbot, “A study of the adhesion of electrophoretically deposited phosphors,” J. Electrochem. Soc. 145 (1998) 1245.
[72] B. E. Russ and J. B. Talbot, “An analysisof the binder formation in electrophoretic deposition,” J. Electrochem. Soc. 145 (1998) 1253.
[73] 黃中奕, “染料敏化及以施受體發光團為染料之太陽能電池研究,” pp. 61-63, 國立台灣大學, 台北 (2005).
[74] D. Matthews, A. Kay, and M. Grätzel, “Electrophoretically deposited titanium dioxide thin films for photovoltaic cells,” Aust. J. Chem. 47 (1994) 1869.
[75] Z. Zhang, Y. Huang, and Z. Jiang, “Electrophoretic deposition forming of SiX-TZP composites in a nonaqueous sol media,” J. Am. Ceram. Soc. 77 (1994) 1946.
[76] T. Hoshikawa, M. Yamada, R. Kikuchi, and K. Eguchi, “Impedance analysis of internal resistance affecting the photoelectrochemical performance of dye-sensitized solar cells,” J. Electrochem. Soc. 152 (2005) E68.
[77] T. Hoshikawa, R. Kikuchi, K. Sasaki, and K. Eguchi, “Impedance analysis of electronic transport in dye-sensitized solar cells.” Electrochemistry 70 (2002) 675.
[78] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, “modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit dondition,” Electrochimica Acta, 47 (2002) 4213.
[79] A. Zaban, M. Greenshtein, and J. Bisquert, “Determination of the electron lifetime in nanocrustalline dye solar cells by open-circuit voltage decay measuremeny,” Chemphyschem, 4 (2003) 859.
[80] Y. Solomentsev, S. A. Guelcher, M. Bevan, and J. L. Anderson, “Aggregation dynamics for two particles during electrophoretic deposition under steady fields,” Langmuir 16 (2000) 9208.
[81] S. A. Guecher, Y. Solomentsev, and J. L. Anderson, “Aggregation of pairs of particles on electrodes during electrophoretic deposition,” Powder Technology 110 (2000) 90.
[82] A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrichemical cell,” Chemical Physics Letters 277 (1997) 105.
[83] J. Ferber and J. Luther, “Computer simulations of light scattering and absorption in dye-sensitized solar cells,” Solar Energy Materials & Solar Cells 54 (1998) 265.
[84] A. Usami, “A theoretical simulation of light scattering of nanocrystalline films in photoelectrochemical solar cells,” Solar Energy Materials & Solar Cells 62 (2000) 239.
[85] A. Usami, “Theoretical simulations of optical confinement in dye -sensitized nanocrystalline solar cells,” Solar Energy Materials & Solar Cells 64 (2000) 73.
[86] S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, “Influence of scattering layers on efficiency of dye-sensitized solar cells,” Solar Energy Materials & Solar Cells 90 (2005) 1176.
[87] Z. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, “Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coordination Chemistry Reviews 248 (2004) 1381.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26500-
dc.description.abstract近年來,染料敏化太陽能電池已被組裝在塑膠基板上,例如ITO-PEN (indium-tin-oxide coated polyethylene naphthalate)為市面上可獲得的透明導電塑膠基材。ITO-PEN無法承受500 oC的高溫處理,但此高溫燒結程序卻為製程中,欲使染敏電池達到高效能表現所必須的。因此,開發低溫製程製備高效率的可撓式染敏電池,便成為一個重要的議題。
本研究使用電泳沈積法製備介孔洞的二氧化鈦薄膜於導電塑膠基材上作為正電極,而白金對電極則以濺鍍法製備在FTO玻璃上。異丙醇中分散良好的奈米二氧化鈦(Degussa, P25),在電泳沈積中以定電壓程序沈積到導電塑膠基材,經過低溫(150 oC)燒結可獲得沒有龜裂的二氧化鈦薄膜。
實驗發現,經由化學後處理將Ti(ΙV) tetraisopropoxide (TTIP)溶液滴覆在二氧化鈦薄膜上,能夠提升元件效率表現。TTIP濃度對元件效率表現所造成的影響,經由電化學阻抗頻譜法及染料吸附量分析,發現在二氧化鈦薄膜上的TTIP化學後處理最佳濃度為1.2x10-3 (mole/cm3)。為了增加膜內染料的吸附量,藉由電泳沈積中不同鍍膜時間的選擇獲致不同膜厚的二氧化鈦薄膜,結果顯示薄膜厚度在11 micrometer時具有最佳的元件效率。膜厚超過此值會促進注入膜內的電子與電解液中的氧化還原對發生再結合反應,並讓電解液較難進入薄膜內層,造成元件效率下降。此外,由BET量測發現,低溫燒結程序也可促使二氧化鈦粒子間相互連結,減少粒子間的晶界阻力。在最佳化實驗的燒結程序後,元件效率可達到3.4%。
因為預期電泳沈積中,擁有較佳分散性質的粉體應擁有較高導電性質的正電極,而Q25二氧化鈦粒子含有比P25粒子更高的界面電位,故嘗試以Q25取代P25粒子製備正電極。然而,實驗發現以Q25組裝的電極效率較P25所組裝的電極為低,可能是因為Q25粒子表面有較多的雜質而佔據了染料的吸附位置。此結果說明電泳沈積中,P25的分散性質並未使製備的電極效率降低。而Q25粉體也以不同的電壓,如200、300、400及500 V電泳沈積於正電極上。發現電壓越高,元件效率就越差。由於粒子在沈積過程中產生聚集的速率正比於電場強度,因此較高的電場強度會形成鬆散的薄膜,而呈現較差的元件表現。
由於在正電極中含有大顆粒的二氧化鈦可收集入射光,增加元件的效能表現,因此本研究中,200 nm的二氧化鈦(U200)被加入電泳槽中使之與Q25粒子共電泳沈積,而得到一具有光捕獲效率較高的二氧化鈦薄膜。藉由交流阻抗分析發現,此型態的正電極由於其鬆散的結構,其膜內電阻相較於完全不含大顆粒子的薄膜高,最佳化的效率也僅有2.4%。另一方面,組裝雙層結構(內層由Q25粒子所製備,外層則包含Q25粒子與光散射粒子)的正電極則成功地將元件效率由3.3%提升到3.9%。這是因為雙層結構的正電極不僅能維持奈米結構薄膜的低內電阻,也能藉由外層以200 nm與Q25的二氧化鈦粒子所組成的光散射層捕捉入射光。
雙層結構的二氧化鈦薄膜經由紫外線/臭氧的處理去除二氧化鈦表面殘留的有機分子,能成功的提升元件效率。其在AM 1.5 (100 mWcm-2)一個模擬太陽光照射下達到的光電壓、短路電流、填充因子及光電轉換效率分別為830 (mV),.2 (mA/cm2),0.71及4.2%。而當白金對電極由FTO-glass換成ITO-PEN基材時,也有同樣4.2%的光電轉換效率。
最後,塑膠染料敏化太陽能電池以UV膠封裝,探索元件的穩定性。結果顯示,元件在室溫下的環境中,經過靜置三個小時仍能維持相同的效能表現。然而,由於UV膠易被電解液所剝蝕,讓液態電解液揮發到外界,使的效率逐漸產生衰減的現象,元件效率在第七個小時相較於原始效率衰減了3.8%。
zh_TW
dc.description.abstractRecently, dye-sensitized solar cells (DSSCs) have been fabricated on the plastic substrates, including the indium-tin-oxide coated polyethylene naphthalate (ITO-PEN), which is a commercially available transparent conductive plastic substrate. However, ITO-PEN could not endure the high temperature (500 oC) treatment, which is a necessary step for sintering TiO2 in DSSCs to achieve high cell efficiency. Fabrication of flexible DSSCs at low temperature with good cell performance thus becomes an important issue.
In this study, the electrophoretic deposition (EPD) method was used to deposit mesoporous TiO2 film onto the plastic substrate as the photo-anode, and platinum was sputtered on the FTO-glass as the counter electrode. Nanocrystalline titanium dioxide (Degussa, P-25) was well dispersed in isopropanol (IPA) and deposited potentio statically onto the plastic substrate by the EPD followed by sintering at low temperature (150 oC), then the crack-free mesoporous TiO2 film was obtained.
The cell performance was improved by chemical post-treatment through the drop coating of Ti(ΙV) tetraisopropoxide (TTIP) solution on the TiO2 films. The effect of TTIP concentration on the cell performance was investigated by EIS analysis and dye loading analysis, and the optimum TTIP concentration was found to be 1.2x10-3 mole/cm3. To enhance the amount of dye loading within the film, different thicknesses of the TiO2 layers as photo-anodes were obtained by changing the deposition time in the EPD. It was found that the optimum cell performance can be achieved at the TiO2 film thickness of 11 micrometer. Greater film thickness would promote the recombination reaction between the injected electrons within the film and the redox couple in the electrolyte. This also would prevent the electrolyte’s penetration into the film, thus decrease the cell performance. In addition, it was found from the BET measurement that low -temperature sintering process could also enhance the connection among TiO2 particles, and decrease the grain boundary resistance among particles. After optimizing the sintering process, the cell efficiency of 3.4% was achieved.
Q25 TiO2 particles possessing higher zeta potential in the solution were used to replace P25 TiO2 particles. It is expected that Q25 powders suspend better in the EPD and may produce more conductive photo-anode. However, the result showed that the photo-anode preparing from Q25 particles performed slightly lower efficiency, as compared to that prepared from P25 particles. This might be that Q25 particle’s surface contained more impurities and occupied the dye adsorbing sites. The results also showed that P25 powders’ suspension property dosen’t harm the photo-anode performance. The photo-anodes prepared with Q25 powder were carried out at different applied electric fields in the EPD, including 200, 300, 400 and 500 V. The higher the voltage was used, the lower the cell efficiency was obtained. Because the aggregation rate of the particle was proportional to the electric field during the deposition, higher electric field was found to produce looser TiO2 film thus exhibited poor cell performance.
If large TiO2 particles were incorporated in the photo-anode, it could harvest incident light and increase cell efficiency. In this study, 200 nm TiO2 particles (U200) were added to the EPD cell to co-deposit with Q25 particles and got a TiO2 film with a higher light harvesting efficiency. However, from the AC impedance analysis, it was found that this photo-anode had high interanl electric resistance, as compared to the film made without any large particles. Due to its looser structure, the optimal cell efficiency was only achieved at 2.4%. On the other hand, preparation of the photo-anodes with bilayer structure (inner layer was prepared by Q25 particles, and outter layer was composed of Q25 particles and light scattering particles) was improved the cell efficiency from 3.3% to 3.9%. This is because bilayer structure not only maintain a low internal electric resistance in the nanocrystalline film, but also trap the incident light by the outer scattering layer, which was prepared by mixing 200 nm and 25 nm TiO2 particle.
TiO2 film with bilayer structure was subjected to UV/Ozone treatment to remove the residual organic molecular on the TiO2 surface, and the cell efficiency was improved. The values of the open–circuit photovoltage, short-circuit photocurrent density, fill factor and sunlight -to-electric energy conversion efficiency achieved were 830 mV, 7.2 mA/cm2, 0.71 and 4.2%, respectively, under illumination with AM 1.5 (100 mWcm-2) simulated sunlight. When the platinum counter electrode was changed from FTO-glass to ITO-PEN, it performed the same cell efficiency of 4.2%.
Finally, plastic DSSC was sealed by UV glue to study the stability of the cell. The result showed that the cell stored at room temperature for three hours performed the same as its original states. However, because the UV glue was degraded by the electrolyte and evaporated, the cell efficiency decayed 3.8% at seven hours compared with the initial performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:12:41Z (GMT). No. of bitstreams: 1
ntu-97-R95524080-1.pdf: 4716747 bytes, checksum: 9ba6b5040832dda8914593ac886ce1e9 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要……………………………………………………..…..…….…. I
英文摘要………………………………………………………...…....…... III
誌謝 ………………………………………………………….....……. VII
表目錄 ………………………………………………………………….. XI
圖目錄 ………………………………………………………….............. XII
第一章 緒論…………………………………..……….…........................ 1
1-1 前言……………………………………………………….……. 1
1-2 太陽能電池介紹………………………………………….……. 3
1-2-1 太陽能光電轉換效率量測介紹………..…….………. 3
1-2-1-1 標準測試環境………………………….......... 3
1-2-1-2 太陽能電池特徵曲線與效能評估參數.......... 6
1-2-1-3 入射光子-電流轉化效率簡介...…………...... 8
1-2-2 p-n接合型半導體太陽能電池…………….………... 10
1-2-2-1 半導體簡介…………………………...…....... 12
1-2-2-2 費米能階………………………………....….. 16
1-2-2-3 接合型太陽能電池工作原理……...………... 18
1-2-2-4 各類型接合型太陽能電池簡介….................. 22
1-2-3 光電化學式太陽能電池…………………………….... 24
1-3 研究動機與目的………………………………...………….…. 27
第二章 文獻回顧…………………………………………….…............ 29
2-1 染料敏化太陽能電池 ……………………..………...………... 29
2-1-1 染料敏化太陽能電池工作原理…....…...….……........ 30
2-1-2 二氧化鈦薄膜電極………………...……...…..…….... 32
2-1-3 光敏染劑………..…………………………...…..……. 38
2-1-4 電解液..……….…………………………..……….….. 41
2-2 電化學阻抗頻譜法…………………………...…….….…........ 43
2-3 文獻中數種製程製作塑膠染料敏化太陽能電池……...…….. 52
2-4 電泳沉積原理簡介………………..…………...……… .…...... 60
第三章 實驗設備與步驟…………………………………….................. 67
3-1 儀器設備…………………………..…………………………... 67
3-2 實驗藥品…………………………..………………................... 69
3-3 實驗方法…………………………..………………................... 71
3-3-1 正電極之製備………………………………................ 71
3-3-2 白金電極之製備…………………………………...... 75
3-3-3 電解液之製備……………………………………...... 75
3-3-4 元件組裝…………………………………………...... 76
3-4 太陽電池電性表現測試…………………………………....... 77
3-4-1 實驗裝置…………………………………………...... 77
3-4-2 光輸出電流-電壓特性曲線………………………..... 77
3-4-3 交流阻抗量測……………………………………...... 79
3-4-4 入射光子-電流轉換效率……………………………. 79
第四章 以電泳沈積法製備可撓式正電極………………………....... 80
4-1 透明導電塑膠基材………………………………….............. 80
4-2 以300 V電壓電泳沈積P25二氧化鈦薄膜………………. 82
4-3 化學表面處理………………………………………………. 89
4-3-1 化學表面處理濃度對元件效率的影響…….…........ 90
4-3-2 以交流阻抗分析TTIP濃度影響………………....... 93
4-3-3 染料吸附量測試…………….………………………. 97
4-3-4 二氧化鈦膜內電子壽命量測……………………….. 102
4-4 不同二氧化鈦膜厚下的元件效率表現……….…..………… 104
4-5 燒結時間對效率表現的影響…………………….………….. 107
第五章 改善正電極效率之探討……………………………….……... 112
5-1 以分散性較佳的二氧化鈦取代P25組裝正電極…............... 114
5-1-1 Q25在不同電壓下的膜厚成長比較………............. 114
5-2 以200 V電壓製備不同膜厚的元件效率…………………… 115
5-3 不同電場強度下製備的元件效率比較…………………….... 118
5-4 電泳沈積光散射層增進元件效率…………………………… 123
5-5 以紫外光/臭氧處理法增進元件效率…………..………......... 134
第六章 全塑膠染料敏化太陽能電池…………………………….…… 136
6-1 以塑膠為基材的對電極取代玻璃對電極…..………............. 136
6-2 元件封裝與穩定性探討……………………..………............. 138
第七章 結論與建議……………………………………………….…… 140
7-1 結論…………………………………………………………… 140
7-2 建議…………………………………………………………… 145
第八章 參考文獻……………………………………………………... 146
dc.language.isozh-TW
dc.subject穩定性zh_TW
dc.subject染料敏化太陽能電池zh_TW
dc.subject塑膠基材zh_TW
dc.subject電泳沈積zh_TW
dc.subject交流阻抗zh_TW
dc.subjectDSSCen
dc.subjectPlastic substrateen
dc.subjectElectrophoretic depositionen
dc.subjectAC impedanceen
dc.subjectStabilityen
dc.title以電泳沈積法製作可撓曲染料敏化太陽能電池zh_TW
dc.titleFabricating Flexible Dye-sensitized Solar Cells by the Electrophoretic Deposition Methoden
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林金福(King-Fu Lin),顏溪成(Shi-Chern Yen),林江珍(Jiang-Jen Lin)
dc.subject.keyword染料敏化太陽能電池,塑膠基材,電泳沈積,交流阻抗,穩定性,zh_TW
dc.subject.keywordDSSC,Plastic substrate,Electrophoretic deposition,AC impedance,Stability,en
dc.relation.page152
dc.rights.note未授權
dc.date.accepted2008-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved