請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26444
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪振發 | |
dc.contributor.author | Kuan-Ru Chen | en |
dc.contributor.author | 陳冠儒 | zh_TW |
dc.date.accessioned | 2021-06-08T07:10:30Z | - |
dc.date.copyright | 2008-08-04 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-07-30 | |
dc.identifier.citation | 1.Amdahl, J. & Kavlie, D. (1992) Experimental and numerical simulation of double hull stranding, DNV-Workshop on Mechanics of Ship Collision and Grounding, Hovik
2.Atkins, A.G. (1997). Fracture mechanics and metalforming : Damage mechanics and the local approach of yesterday and today. 327-350. Fracture research in retrospect, An anniversary volume in honour of George R. Irwin’s 90th Birthday. Ed. H.P. Rossmanith, A.A. Balkema/Rotterdam/Brookfield 3.Cole, R. H. (1948). Underwater explosions, Dover, New York (1948). 4.COLLISION AND GROUNDING, (2006). 16th International Ship and Offshore Structures Congress, Vo1.2 5.Cowper, G. & Symonds, P. (1957). Strain hardening and strain rate effects in the loading of cantilever beams, Technical report, Brown University, Division of applied mathematics, report no. 28. 6.Fleck,N.A., Deshpande,V.S .,2004. The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics— Transactions of the ASME 71(3), 386–401. 7.Fung, T C (1996). Shear Stiffness for C-core Sandwich Panels, J. Structural Engineering, pp.958-966. 8.Huang H. (1970). An Exact Analysis of the Transient Interaction of Acoustic Plane Wave with a Cylinder Elastic Shell. Journal of Applied Mechanics; p.1090-1099. 9.Huang H. (1970). Transient Interaction of Plane Acoustic Wave with a Spherical Elastic Shell. Journal of Applied Mechanics; p.1090-1099. 10.Keil, A. H. (1961). The Response of Ship to Underwater Explosions, Trans. SNAME, pp.366-410. 11.Kitamura, O. (2001) FEM Approach to the Simulation of Collision and Grounding Damage”, 2nd International Conference on Collision and Grounding of Ships, Copenhagen, Denmark, July. 12.Klanac, A., Jelovica, J. (2006). Vectorization in the structural optimization of a fast ferry, submitted for publication in XVI SORTA conference, Rijeka, Croatia. 13.Klanac, A., Ehlers, S., Tabri, K. Rudan, S., Broekhuijsen J. Qualitative design assessment of crashworthy structures, Proceedings of IMAM (2005). Lisboa, Portugal. 14.Kuroiwa, T. (1996). Numerical simulation of actual collision and grounding accidents, International Conference on Designs and Methodologies for Collision and Grounding Protection of Ships, page 7.1-7.2, San Francisco, SNAME, SNAJ 15.Liu, T., Deng Z.C., Lu T.J. (2006). Design optimization of truss-cored sandwiches with homogenization. Department of Engineering Mechanics, Northwestern Polytechnical University. 16.Lok, T S., Cheng Q. (1999). Elastic deflection of thin-walled sandwich panel, Journal of Sandwich Structures and Materials, October, 1999,m pp.279~298. 17.LS-DYNA, (2006). Keyword User’s Manual. Version 971, 2006, Livermore Software Technology Corporation 18.McShane, G.J., Radford D.D. (2006). The response of clamped sandwich plates with lattice cores subjected to shock loading, European Journal of Mechanics, A/Solids, v 25, n 2, March/April. p 215-229 19.Minorsky, V. (1959). An analysis of ship collisions with reference to protection of nuclear power plants, Journal of Ship Research, 3, 1-4 20.Mohr, Dirk, (2003). Experimental Investigation and Constitutive Modeling of Metallic Honeycombs in sandwich Structures, Doctor of Philosophy in Applied Mechanics at the Massachusetts I T 21.Paik J.K., Thayamballi A.K., Kim G.S. (1999). The strength characteristics of aluminum honeycomb sandwich panels. Department of Naval Architecture and Ocean Engineering, Pusan National University, Pusan 609-735 22.Paik, J.K.(1999). On rational design of double hull tanker structures against collision, Preprint SNAME Anmual Meeting, Paper No.14. 23.Pedersen, P.T. & Zhang, S. (2000). Absorbed energy in ship collisions and grounding – revising Minorsky’s empirical method, Journal of Ship Research, 44:2,140-154 24.Qiu, X., Deshpande, V.S., Fleck, N.A., (2005). Impulsive loading of clamped monolithic and sandwich beams over a central patch. J. Mech. Phys. Solids 53 (5), 1015–1046. 25.Rice, J.R. & Tracey, D.M. (1969). On the ductile enlargement of voids in triaxial stress fields, Journal of Mechanics and Physics of Solids, 17, 201-217. 26.Schechter, R.S., Bort,R.L. (1981). The response of two fluid-coupled plates to an incident pressure pulse,ADA104801 27.Simonsen, B.C. (1997). Mechanics of ship grounding, Ph.D. thesis, Department of Naval Architecture and Offshore Engineering, Technical University of Denmark 28.Sajdak, J.A.W., Brown, A.J. SSC(2005). Report by Committee Modeling longitudinal damage in ship collision. 29.Tørnqvist, R. (2003). Design of crashworthy ship structures. Maritime Engineering. Department of Mechanical Engineering, Technical University of Denmark. 30.Wang, Zili; Gu, Yongning. (2000). Influence of Impact Condition on Behavior of Double Side Structure in Collision. Ship Engineering NO.6 31.Wang, G.(2000), Behavior of a double hull in a variety of stranding or collision scenarios, Marine structures 13(2000),pp. 147-187. 32.Wierzbicki, T. (1995). Crushing damage of web girders under localized static loads, Journal of construction steel research 33 pp. 199-235 33.Wisniewski, Krzysztof., Kolakowski, Przemyslaw. (2003). The effect of selected parameters on ship collision results by dynamic FE simulations. Finite Elements in Analysis and Design,:985-1006. 34.Woisin, G. (1968). Eine untersuchung der Ahnlichkeitsgesetze bei Stosschaden,besonders,Schiffkollisionen,und.Kollisionsmodellversuchen. Schiff untd Hafen, 11,740-747 35.Yao, X.L., Hou, M.L., (2006). Numerical simulation research on counter impingement capability of Y-shape shipboard structure,Journal of Harbin Engineering University, Vo1.27;pp.796-801 36.YE Wenbing, LIU Jingxi, XIAO Shuming, LI Tianyu, (2007). The analysis of the influence of the bow s shape on the crashworthiness of the double-shell. Ship&ocean engineering. Vol.36 37.Xue Z, Hutchinson JW., (2004) A comparative study of blast-resistant metal sandwich plates. Int J Impact Eng 2004;30:1283–305. 38.余孟泉 (1998). 船體受水下爆震衝擊之結構動態反應研究,國立台灣大學工程科學及海洋工程研究所碩士論文. 39.呂岳峰 (2000). 水下爆震三維船體顫震分析,國立台灣大學工程科學及海洋工程研究所碩士論文. 40.周宗燐 (2005). 圓柱殼結構受水下爆炸衝擊之動態反應研究,國立台灣大學工程科學及海洋工程研究所碩士論文. 41.洪振發,徐培譽 (2003),嵌板受水下爆炸衝擊的非線性動態反應,J. SNAME-Taiwan, Vol.22, No.4, pp.201-212. 42.洪振發,陳建邦 (2007). 船舶雙層殼結構抗撞能力估算法分析,Journal of Taiwan Society of Naval Architects and Marine Engineers, Vol.26, No.3, pp.139-150, 2007 43.洪振發,黃萬偉 (2005). 船舶結構遭錐狀體撞擊時的撕裂破壞之研究,Journal of Taiwan Society of Naval Architects and Marine Engineers, Vol.24, No.2, pp.121-132, 2005 44.郭獻堯 (2007). 船用金屬三明治結構抗撞能力研究,國立台灣大學工程科學及海洋工程研究所碩士論文 45.鄭貴華 (2007). 金屬三明治結構之水下爆震,國立台灣大學工程科學及海洋工程研究所碩士論文. 46.戴毓修 (2000).載具結構及裝備抗震強度之研究,中正理工學院國防科學研究所博士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26444 | - |
dc.description.abstract | 近年來國際上對海洋環境保護與海洋生態維護的重視,對船舶安全提升需特別考量。在船舶結構中,雙層底與雙層殼結構,均屬金屬三明治結構。由於雷射銲接技術的精進與設備經濟化的趨勢,先進雷射銲接鋼三明治結構在歐洲造船界再度被重視。三明治結構具結構強度均勻性、結構輕量化、結構高度降低等,比傳統的肋骨加強板,或船體深樑結構更具優勢。先進鋼材三明治結構,可應用於多處船體結構與海洋工程結構,主結構如甲板、雙層船殼、雙層底、減振與降噪音隔艙壁、油輪雙層隔艙壁、或海域平台抗氣爆艙壁等。因此本文探討金屬三明治結構受到衝擊的破壞與變形,以及不同夾心形狀在抗撞及抗震能力上的不同。
本文蒐集已發表之鋼材三明治結構,建立有限元素模型,分別為探討不同夾心三明治結構進行低速撞擊與高速衝擊分析。低速撞擊以考慮船舶的撞擊與擱淺時之破壞狀況,以次要結構消散撞擊動能,保護主體結構安全為重點。在高速衝擊方面則探討結構遭受水下爆炸衝擊時的彈塑性暫態反應分析,並比較其抗爆震性能。本文探討的鋼材三明治結構計有: a.船舶與海洋結構可能採用之雙層殼結構:肋板夾心雙層殼結構、X型夾心雙層殼結構與Y 型夾心雙層殼結構。 b.輕結構可能採用的三種鋼材三明治結構:蜂槽型夾心三明治結構、桁架夾心三明治結構與方格夾心三明治結構。 | zh_TW |
dc.description.abstract | Attention to the marine environmental protection and marine ecology in the world in recent years, to promote the safe of sea going vessel has been regulated strictly. The double bottom and double hull of ships are two types of metal sandwich structures. Due to the progress of laser welding technology and the investment advantage in last years, the European ship industries paid attention to the application of advanced laser welded steel sandwich structures. It has superiority over the traditional stiffened plates and deep girders in uniformly distributed stiffness, light weight, etc. It can be applied to ship and offshore structures, e.g. deck, double hull, double bottom, double bulkhead, and also anti-blast bulkhead. The paper investigate the damage and deformation of the metal sandwich structure subjected to shock loading also the crash worthiness and anti-shock properties of different types of sandwich structure.
In this paper the steel sandwich structures which are possibly used in European ship yard were selected as study cases. The dynamic responses of sandwich structure subjected to low speed and high speed impact will be performed, to observe its crashworthiness against collision and anti-shock characteristics for protection of equipments on board. The six types of steel sandwiches analyzed in the paper are: a.The double hull structures which are possibly used for ship and offshore structures:The flat-core double hull, The x-core double hull, The y-core double hull. b.The sandwiches which are possibly used for light structures: The honeycomb sandwich panels, The truss core sandwich panels, The rectangle flat core sandwich panels. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:10:30Z (GMT). No. of bitstreams: 1 ntu-97-R95525030-1.pdf: 19456370 bytes, checksum: 30677e147a0dcaa89311ef09c87ddd90 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 第一章 導論 1
1.1 研究動機與目的 1 1.2 文獻回顧 3 1.3 研究方法 6 第二章 船體結構的基本力學行為與水下爆震理論 9 2.1 材料力學特性 9 2.2 應變率對材料的影響 11 2.3 極限強度與網格大小的關係 12 2.4 船體結構雙層殼遭受側向撞擊的破壞模式 14 2.5 水下爆震現象 18 2.6 水下爆震波 19 2.7 氣泡移動與次衝擊波 20 2.8 水下爆炸能量分布 22 2.9 水面及水底邊界對衝擊波傳遞的影響 23 第三章 金屬三明治結構 27 3.1 本文研究模型 29 3.2 有限元素分析模型 32 3.3 分析模型邊界設定 35 第四章 不同夾心金屬三明治結構靜力分析 37 4.1 von Mises 降伏準則 37 4.2靜態分析模型邊界與負載設定 38 4.2.1 分析結果 39 4.2.2 靜態分析結果討論 46 4.3 不同夾心結構挫曲分析 47 第五章 不同夾心金屬三明治結構抗撞能力比較 57 5.1 簡化解析方法之基本原理 57 5.2 研究模型 60 5.2.1 蜂巢狀夾心模型 64 5.2.2 桁架夾心模型 68 5.2.3 格狀夾心模型 70 5.2.4 X型夾心模型 72 5.2.5 Y型夾心模型 74 5.2.6 肋板夾心模型 77 5.2.7 肋骨加強板 78 5.3 比較與討論 80 第六章 不同夾心金屬三明治結構抗爆震能力比較 87 6.1 有限元素分析水下爆炸現象 87 6.2 龍骨爆震因子 89 6.3 研究模型 90 6.4 分析結果比較 92 6.4.1 加速度比較 92 6.4.2 位移量比較 101 6.4.3 能量比較 104 第七章 結論及展望 109 7.1 結果討論 109 7.2 各種結構優點比較 110 7.3 未來展望 111 參考文獻 112 | |
dc.language.iso | zh-TW | |
dc.title | 船用鋼材三明治結構之抗撞與防震特性研究 | zh_TW |
dc.title | Impact Response of Steel Sandwich Structure in Ship | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孔慶華,王偉輝,梁卓中 | |
dc.subject.keyword | 金屬三明治結構,雙層殼,船舶碰撞,結構撞擊,水下爆炸,結構爆震反應, | zh_TW |
dc.subject.keyword | steel sandwich structures,double hull,ship collision,structure impact,underwater explosion,shock response, | en |
dc.relation.page | 116 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-07-31 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。