請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26437完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲(Jui-Che Tsai) | |
| dc.contributor.author | Chih-Chang Fu | en |
| dc.contributor.author | 傅至璋 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:10:14Z | - |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-30 | |
| dc.identifier.citation | References
[1] A. Hussain, M. A. Hannan, H. Sanusi, A. Mohamed, and B. Y. Majlis, “ Characterization of MEMS Automotive Sensor for Tire Pressure Monitoring System,” Journal of Applied Sciences, vol. 6, no. 4, pp. 810-815, 2006. [2] S. E. Alper and T. Akin,“ A Single-Crystal Silicon Symmetrical and Decoupled MEMS Gyroscope on an Insulating Substrate,” Journal of Microelectromechanical Systems, vol. 14, no. 4, pp. 707-717. [3] M. N. Horenstein, J. A. Perreault, T. G. Bifano,“ Differential Capacitive Position Sensor for Planar MEMS Structures with Vertical Motion,” Sensors and Actuators A, vol. 80, no. 1, pp. 53-61, 2000. [4] L. Spangler and C. J. Kemp, “ISAAC - Integrated Silicon Automotive Accelerometer,” Proc. of Transducers’95, pp. 585-588. [5] M. Helsel, G. Gassner, M. Robinson, and J. Woodruff,“ A Navigation Grade Micro-Machined Silicon Accelerometer,” Proc. of IEEE Position Location and Navigation Symposium 1994, pp. 51-58. [6] B. S. Davis, T. Denison, J. Kaung,“ A Monolithic High-g SOI-MEMS Accelerometer for Measuring Projectile Launch and Flight Accelerations,” Journal of Shock and Vibration, vol. 13, no. 2, pp. 127-135. [7] http://wii.com [8]W. Qu, C. Wenzel, and K. Drescher,“ Fabrication of Low-Cost Capacitive Accelerometers by 3D Microforming,” Proc. of Optoelectronic and Microelectronic Materials and Devices 1996 Conference on, pp. 462-465. [9] R. Amarasinghe, D. V. Dao, T. Toriyama, and S. Sugiyama: A Silicon Micromachined Six-Degree of Freedom Piezoresistive Accelerometer, Proc. of IEEE Sensors 2004, pp. 852-855. [10] D. L. DeVoe, and A. P. Pisano: Surface Micromachined Piezoelectric Accelerometers (PiXLs), Journal of Microelectromechanical Systems, vol, 10, no. 2, pp. 180-186, June 2001. [11] K. T. Chen, C.C. Fu, T. L. Hsieh, J. C. Tsai, and C. W. Sun: A Novel High-g Micro Accelerometer Using A Hybrid Capacitive/Piezoresistive Sensing Technique, Proc. of Asia-Pacific Conference on Transducers and Micro-Nano Technology 2008. [12] http://www.memscap.com/ [13] http://robotics.eecs.berkeley.edu/~pister/245/polymumps.dr.v10%5B1%5D.pdf [14] http://www.memscap.fr/mumps/documents/SOIMUMPs.dr.v4.pdf [15]http://www.memscapinc.com/mumps/documents/MetalMUMPs.flow.ppt#366,2,MetalMUMPs Process [16] http://www.omega.com/prodinfo/accelerometers.html [17] http://www.fme.fujitsu.com [18] C. I. Lee, A. H. Johnston, W. C. Tang, and C. E. Barnes, “ Total Dose Effects on Microelectromechanical Systems(MEMS) Accelerometers,” IEEE Transactions on Nuclear Science, vol 43, no. 6, 1996, pp 3127-3132. [19] Y. Kanda, “Piezoresistance Effect of Silicon,” Sensors Actuators, vol. A28, no. 2, pp. 83-91. [20] J. P. Lynch1, A. Partridge, K. H. Law, T. W. Kenny, A. S. Kiremidjian, and E. Carryer,“ Design of Piezoresistive MEMS-Based Accelerometer for Integration with Wireless Sensing Unit for Structural Monitoring,” Journal of Aerospace Engineering, ASCE, July, 2003, pp. 108-114. [21] Q. Zou, W. Tan, E. S. Kim, and G. E. Loeb,“ Single- and Triaxis Piezoelectric-Bimorph Accelerometers,” Journal of Microelectromechanical Systems, vol. 17, no. 1, Feb, 2008, pp. 45-57. [22] C. H. Liu, and T. W. Kenny,“ A High-Precision, Wide-Bandwidth Micromachined Tunneling Accelerometer,” Journal of Microelectromechanical Systems, vol. 10, no. 3, September, 2001, pp. 425-433. [23] C. S. Smith,“ Piezoresistance Effect in Germanium and Silicon,” Phys. Rev., vol. 94, no. 1, pp. 42-49, 1954. [24] S. M. Sze, Semiconductor Sensors, New York: Wiley, 1994. [25] J. N. Palasagaram and R. Ramadoss, “MEMS-Capacitive Pressure Sensor Fabricated Using Printed-Circuit-Processing Techniques,” IEEE Sensors Journal, vol. 6, no. 6, December 2006, pp. 1374-1375. [26] Y. Wang, X. Zheng, L. Liu, and Z. Li, “A Novel Structure of Pressure Sensors,” IEEE Transactions on Electron Devices, Vol. 38, No. 8, Aug. 1991, pp. 1797-1802. [27] A. Kulygin, C. Kirsch, P. Schwarz, U. Schmid, and H. Seidel, “Study on the Micromachined Gyroscope,” Proc. MEMS 2008, pp. 868-871. [28] G. Zhou, K. K. L. Cheo, Y. Du, and F. S. Chau, “A Novel Optical Lamellar Grating Out-of-Plane Microgyroscope,” Proc. MEMS 2008, pp. 864-867. [29] S. E. Alper, I. E. Ocak, and T. Akin, “Ultrathick and High-Aspect-Ratio Nickel Microgyroscope Using EFAB Multilayer Additive Electroforming,” Journal of Microelectromechanical Systems, vol. 16, no. 5, Oct. 2007, pp. 1025-1035. [30] M. A. Ross, “Combination Accelerometer and High Frequency Pressure Transducer for Crash Sensing,” European Patent EP 0 677 431 B1, July 25, 2001. [31] K. A. B. A. Wahid, I. A. Azid, A. M. Shahar, and O. Sidek,“Development of Integrated Detection System for Shock Vibration by Using MEMS Accelerometer,” International Conference on Semiconductor Electronics, 2006, pp. 127-133. [32] J. R. Minnich, L. R. Mawhorr, and J. G. Scharf, “Accelerometer-Based Monitoring and Control of Concrete Consolidation,” United States Patent 6055486, Apr. 25, 2000. [33] J. Rohac, “Accelerometers and an Aircraft Attitude Evaluation,” Sensors, 2005 IEEE,pp. 784-789. [34] M. E. Ash, “Equipping GPS Satellites with Accelerometers and Satellite-To-Satellite Observables,” Proc. ION National Technical Meeting, 2002, San Diego, pp. 8-17. [35] B. S. Davis, T. Denison, J. Kuang, “A Monolithic High-g SOI-MEMS Accelerometer for Measuring Projectile Launch and Flight Accelerations,” Shock and Vibration, Vol. 13, No. 2, 2006, pp. 127-135. [36] A. Selvakumar and K. Najafi,“ A High Sensitivity Z-Axis Capacitive Silicon Microaccelerometer with a Torsional Suspension,” J. Microelectromech. Syst., 7, pp. 192-200. [37] S. Huang et al.,“A Piezoresistive Accelerometer with Axially Stressed Tiny Beams for Both Much Increased Sensitivity and Much Broadened Frequency Bandwidth,” Proc. Transducers ’03, pp. 91-94. [38] Q. Zou., W. Tan, E. S. Kim, and G. E. Loeb, “Highly Symmetric Tri-Axis Piezoelectric Bimorph Accelerometer,” Proc. MEMS 2004, pp. 197-200. [39] D. D. Bruyker, A. Cozma, and R. Puers, “A Combined Piezoresistive/Capacitive Pressure Sensor with Self-Test Function Based on Thermal Actuation,” Sensors and Actuators A, 66 (1998), pp. 70-75. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26437 | - |
| dc.description.abstract | 在本篇論文中,我們將介紹具有兩種感測機制(電容式/壓阻式)的微加速計。 一般說來,微加速計通常只具有單一的感測機制。
在本篇論文中,就我們的所知,我們是第一個將兩種不同的感測機制(電容式/壓阻式)結合在一個加速計上的。 對於我們所設計的平面式移動之加速計而言,在690g的加速度下,所感測到最大電容的改變量為0.028 pF, 在612g的加速度下,壓阻式所感測到的最大電壓變化為0.335V,所感測到的機械結構共振頻率為4.26 kHz,和我們用ANSYS軟體模擬的結果相比之下只有不到5%的誤差。 對於另一個Z軸方向的微加速計而言,在11g的加速度下壓阻式所感測到的最大電壓變化為0.215 V,在10.3 g的加速度下,電容式感測到最大的電容變化為0.26 pF, 機械的共振頻率經由計算為353 Hz。 | zh_TW |
| dc.description.abstract | In this paper, we want to introduce a novel micro accelerometer with a hybrid piezoresistive/capacitive sensing technique. In general, micro accelerometer has only one type sensing technique.
In this paper, we report, to the best of our knowledge, the first micro accelerometer using a hybrid capacitive/piezoresistive sensing technique. Here, we will introduce two micro accelerometer, in-plane and out-of-plane, designed by us. For our novel high-g in-plane micro accelerometer, the measured capacitance change in the capacitive sensing mode is 0.028 pF under 690 g. The measured voltage change in the piezoresistive sensing mode is 0.335 V under 612 g. The mechanical resonant frequency of the micro accelerometer is measured to be 4.26 kHz, i.e. < 5% deviation from the ANSYS prediction. For our z-axis out-of-plane, the maximum measured voltage change in the piezoresistive sensing mode is 0.215V under 11 g. The maximum measured capacitance change in the capacitive sensing mode is 0.26 pF under 10.3 g. The mechanical resonant frequency of the micro accelerometer is calculated to be 353 Hz. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:10:14Z (GMT). No. of bitstreams: 1 ntu-97-R95941077-1.pdf: 1825640 bytes, checksum: d7e00c4fe1c0800f37b8c8d6e002e471 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 致謝…………………………………………………………………………I
中文摘要………………………………………………………………II Abstract……………………………………………………………………………………...III Contents……………………………………………………………………………………..IV List of Figures………………………………………………...…………………………VII Chapter 1 Introductions of MEMS Chapter 2 Microelectromechanical Systems (MEMS) Technology 2-1 Multi-User MEMS Process (MUMPs…………………………………………….3 2-2 PolyMUMs………….…………………...………………………………………..3 2-3 SOIMUMPs……….………………………………………………………………4 2-4 MetalMUMPs…...………...………………………………………………………6 Chapter 3 Introductions of Microaccelerometer 3-1 What Is Accelerometer?..........................................................................................8 3-2 Working Principles………………………………………………………………..9 3-3 Some Other Applications…………………...………………………………….....9 3-4 Capacitive Accelerometer………………...……………………………………..10 3-5 Piezoresistive Accelerometer……………………………………………………12 3-6 Piezoelectric Accelerometer………………………………….………………………………..14 3-7 Tunneling Accelerometer………………………………………………………..18 Chapter 4 Design, Fabrication and Working Principle of Our Microaccelerometer 4-1 Introductions of Piezoresistance……..…………………….……………………20 4-2 Piezoresistive Sensing…………………………………………………………...23 4-3 Capacitive Sensing Mechanism……………………………………...……….…27 Chapter 5 A Novel High-g Micro Accelerometer Using a Hybrid Piezoresistive/Capacitive Sensing Mechanism 5-1 Design, Fabrication and Working Principle………………………….…………..31 5-2 Experimental Results………………………….………………………………….34 5-2.1 Capacitive Sensing…………………………………………….....35 5-2.2 Piezoresistive Sensing……………………………………………36 5-2.3 Resonant Frequency……………………………………………...38 Chapter 6 An Out-of-Plane Z-Axis Accelerometer with a Hybrid Capacitive/Piezoresistive Sensing Mechanism 6-1 Design, Fabrication and Operation Principle…………………………………….41 6-2 Device Characterization…………………………………………….……………46 6-2.1 Piezoresistive Sensing…………………………………………....48 6-2.2 Capacitive Sensing……………………………………………….49 6-2.3 ANSYS Calculation of the Resonant Frequency………………...51 Chapter 7 Conclusions 7-1 A Novel High-g Micro Accelerometer…………...………..……………………53 7-2 An Out-of-Plane Z-Axis Micro Accelerometer…………….………………...…54 References | |
| dc.language.iso | en | |
| dc.subject | 微加速計 | zh_TW |
| dc.subject | Microaccelerometer | en |
| dc.title | 使用混合式(電容式/壓阻式)感測機制的微加速計 | zh_TW |
| dc.title | Micro Accelerometers with a Hybrid Piezoresistive/Capacitive Sensing Mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃鼎偉(Ding-Wei Huang),孫家偉(Chia-Wei Sun) | |
| dc.subject.keyword | 微加速計, | zh_TW |
| dc.subject.keyword | Microaccelerometer, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 1.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
