請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26434完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉深淵(Shen-Iuan Liu) | |
| dc.contributor.author | Chao-Chyun Chen | en |
| dc.contributor.author | 陳超群 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:10:08Z | - |
| dc.date.copyright | 2008-08-04 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-07-31 | |
| dc.identifier.citation | [1] M. Johnson and E. Hudson, “A variable delay line PLL for CPU-coprocessor synchronization,” IEEE J. Solid-State Circuits, vol. 23, pp. 1218-1223, Oct. 1988.
[2] M.-J. Edward Lee, William J. Dally, Trey Greer , Hiok-Tiaq Ng, Ramin Farjad-Rad, John Poulton, and Ramesh Senthinathan, ”Jitter transfer characteristics of delay-locked loops- Theories and Design Techniques,” IEEE J. Solid-State Circuits, vol. 38, pp.614-621, April 2003. [3] John G. Maneatis, “Low-jitter Process-Independent DLL and PLL based on Self-Biased Techniques,” IEEE J. Solid-State Circuits, vol. 31, pp. 1723-1732, Nov. 1996. [4] Y. Moon, J. Choi, K. Lee, D. K. Jeong, and M. K. Kim, “An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance,” IEEE J. Solid-State Circuits, vol. 35, pp. 377-384, Mar. 2000. [5] H. H. Chang, J. W. Lin, C. Y. Yang, and S. I. Liu, “A wide-range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, pp. 1021-1027, Aug. 2002. [6] S. Sidiropoulos and M. A. Horowitz, “A semidigital dual delay-locked loop”, IEEE J. Solid-State Circuits, vol. 32, pp.1683-1692, Nov. 1997. [7] T. H. Lee, K. S. Donnelly, J. T. C. Ho, J. Zerbe, M. G. Johnson, and T. Ishikawa, “A 2.5V CMOS delay-locked loop for an 18 Mbit, 500Megabyte/s DRAM,” IEEE J. Solid-State Circuits, vol. 29, pp. 1491-1496, Dec. 1994. [8] T. Yoshimura, Y. Nakase, N. Watanabe, Y. Morooka, Y. Matsuda , M. Kumanoya and H. Hamano, “A delay-locked loop and 90-degree phase shifter for 800 Mbps double data rate memories”, Digest of Technical Papers, Symposium on VLSI Circuits, pp. 66-67, June 1998. [9] Y. J. Yoon, H. I. Kwon, J. D. Lee, B. G. Park, N. S. Kim, U. R. Cho, and H. G. Byun, “Synchronous mirror delay for multiphase locking”, IEEE J. Solid-State Circuits, vol. 39, pp.150-156, Jan. 2004. [10] J. A. Weldon, R. S. Narayanaswami, J. C. Rudell, L. Lin, M. Otsuka, S. Dedieu, L. Tee, K. C. Tsai, C. W. Lee and P. R. Gray,“A 1.75-GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers”, IEEE J. Solid-State Circuits, vol. 36, pp. 2003-2014, Dec. 2001. [11] R. Magoon, A. Molnar, J. Zachan, G. Hatcher and W. Rhee, “A single-chip quad-band (850/900/1800/1900 MHz) direct conversion GSM/GPRS RF transceiver with integrated VCOs and fractional-N synthesizer”, IEEE J. Solid-State Circuits, vol. 37, pp. 1710-1720, Dec. 2002. [12] J. Craninckx, V. Gravot and S. Donnay, “A harmonic quadrature LO generator using a 90-degree delay-locked loop”, Proceeding of the 30th European Solid-State Circuits Conference, pp. 127-130, Sept. 2004. [13] H. Djahanshahi, and C. A. T. Salama, ”Differential CMOS circuits for 622-MHz/933MHz clock and data recovery applications”, IEEE J. Solid-State Circuits, vol. 35, pp.847-855, June 2000. [14] M. Rau, T. Oberst, R. Lares, A. Rothermel, R. Schweer, and N. Menoux, ” Clock/data recovery PLL using half-frequency clock”, IEEE J. Solid-State Circuits, vol. 32, pp.1156-1159, July 1997. [15] R. C. H. van, Eric A. M. Klumperink, C. S. Vaucher and B. Nauta, “Low-jitter clock multiplication: A comparison between PLLs and DLLs”, IEEE Trans. Circuits and Systems: Part-II, vol. 49, no 8, pp. 555-566, Aug. 2002. [16] J. M. Chou, Y. T. Hsieh and J. T. Wu, “Phase averaging and interpolation using resistor strings or resistor rings for multi-phase clock generation”, IEEE Trans. Circuits and Systems: Part-II, vol. 53, no. 5, pp. 984-991, May 2006. [17] W. S. T. Yan and H. C. Luong, “A 900-MHz CMOS low-phase-noise voltage-controlled ring oscillator”, IEEE Trans. Circuits and Systems: Part-II, vol. 48, no. 2, pp.216-221, Feb. 2001. [18] L. Yang, Y. Zhou and J. Yuan, “A non-feedback multiphase clock generator using direct interpolation”, The 45th Midwest Symposium on Circuits and Systems, vol. I, pp. 340-343, Aug. 2002 [19] J. Yuan and C. Svensson, “ High speed CMOS circuit technique”, IEEE J. Solid-State Circuits, vol. 24, pp. 62-70, Feb. 1989. [20] J. G. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques”, IEEE J. Solid-State Circuits, vol. 31, pp. 1723-1732, Nov. 1996. [21] Jri Lee, Kenneth S. Kundert and Behzad Razavi, ”Modeling of jitter in bang-bang clock and data recovery circuits”, IEEE CICC, pp. 711-714, Oct. 2003. [22] Mehmet soyuer and Robert G. Meyer, ”Frequency limitation of a conventional phase-frequency detector”, IEEE J. Solid-State Circuits, vol. 25, pp. 1019-1022, Aug. 1990. [23] Woogeun Rhee, ”Design of high-performance CMOS charge pumps in phase-locked loops”, Proc. IEEE International Symposium on Circuit and Systems, vol. 2, pp.545-548, 1999. [24] B. -C. Lim, I. -J. Jo, D. -S. Park and K. -T. Hong, “A wide operating frequency range delay-locked loop using a recursive DA converter,” Proceeding of the 32th European Solid-State Circuits Conference, pp. 456-459, Sept. 2006. [25] E. Song, S. -W. Lee, J. -W. Lee, J. Park, and S. –I. Chae, “A reset-free anti-harmonic delay-locked loop using a cycle period detector,” IEEE J. Solid-State Circuits, vol. 39, pp.2055-2061, Nov. 2004. [26] B. W. Garlepp, K. S. Donnelly, J. Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V. Tran, C. L. Portmann, D. Stark, Y.-F. Chan, T. H. Lee, and M. A. Horowitz, “A portable digital DLL for high-speed CMOS interface circuits,“ IEEE J. Solid-State Circuits, vol. 34, pp. 632-644, May 1999. [27] Y. J. Jung, S. W. Lee, D. Shim, W. Kim, C. Kim, and S. I. Cho, “A dual-loop delay-locked loop using multiple voltage-controlled delay lines,” IEEE J. Solid-State Circuits, vol. 36, pp. 784-791, May 2001. [28] S. J. Bae, H. J. Chi, Y. S. Sohn, and H. J. Park, “A VCDL-based 60-760MHz dual-loop DLL with infinite phase-shift capability and adaptive-bandwidth scheme,” IEEE J. Solid-State Circuits, vol. 40, pp. 1119-1129, May 2005. [29] F. Yang, J. H. O’Neill, D. Inglis, and J. Othmer, “A CMOS low-power multiple 2.5-3.125-Gb/s serial link macrocell for high IO bandwidth network ICs,” IEEE J. Solid-State Circuits, vol. 37, pp. 1813-1821, Dec. 2002. [30] F. Mu, and C. Svensson, “Pulsewidth control loop in high-speed CMOS clock buffers,” IEEE J. Solid-State Circuits, vol. 35, pp. 134-141, Feb. 2000. [31] S. R. Han and S. I. Liu, “A 500-MHz-1.25GHz fast-locking pulsewidth control loop with presettable duty cycle,” IEEE J. Solid-State Circuits, vol. 39, pp. 463-468, Mar. 2004. [32] R. J. Yang and S. I. Liu, “A 40-550MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J. Solid-State Circuits, vol. 42, pp. 361-373, Feb. 2007. [33] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: Wiley, 1997. [34] S. Kim, K. Lee, Y. Moon, D. K. Jeong, Y. Choi, and H. K. Lim, “A 960Mb/s/pin interface for skew-tolerant bus using low jitter PLL,” IEEE J. Solid-State Circuits, vol. 32, pp. 691-700, May 1997. [35] Ting Wu, Kartikeya Mayatam and Un-Ku Moon, 'An on-chip calibration technique for reducing supply voltage sensitivity in ring oscillators', IEEE J. Solid-State Circuits, vol. 40, pp. 775-783, April 2007. [36] ARM, “Intelligent energy management: an SoC design based on ARM926EJ-S,” HotChips15, Aug. 2003. [37] H. Kodama, et al., “Frequency-Hopping vernier clock generators for multiple clock domain SoCs,” IEEE CICC, pp. 91-94, Oct. 2004. [38] W.-B Yang, S.-C Kuo, Y.-H Chu and K.-H Cheng, “The new approach of programmable pseudo Fractional-N clock generator for GHz operation with 50% duty cycle,” IEEE Proc. of the 2005 European conference on circuit theory and design, vol.3, pp.193-196, Aug. 2005. [39] K. Nose, A. Shibayama, H. Kodama, M. Mizuno, M. Edahiro, and N. Nishi, “Deterministic inter-core synchronization with periodically all-in-phase clocking for low-power multi-core SoCs,” ISSCC Dig. Tech. Papers, pp.296-297, Feb., 2005. [40] A. Shibayama, K. Nose, Sunao Torii, M. Mizuno, and M. Edahiro, “Skew-tolerant global synchronization based on periodically all-in-phase clocking for Multi-Core SOC platforms,” Symposium on VLSI Circuits Digest of Technique Papers, pp.158-159, June 2007. [41] J. H. Kim, Y. H. Kwak, M. Y. Kim, S. W. Kim and C. Kim, 'A 120MHz-1.8GHz CMOS DLL-based clock generator for dynamic frequency scaling', IEEE Journal of Solid-State Circuits, vol. 41, pp. 2077-2082, Sept. 2006. [42] H.-H Chang and S.-I Liu, 'A wide-range and fast-locking all-digital cycle-controlled delay-locked loop', IEEE J. Solid-State Circuits, vol. 40, pp. 661-670, March 2005. [43] R. Farjad-Rad, W. Dally, H. T. Ng, R. Senthinathan, M.-J.E. Lee, R. Rathi, and J. Poulton, “A low-power multiplying DLL for low-jitter multigigahertz clock generation in highly integrated digital chips”, IEEE J. Solid-State Circuits, vol. 37, pp.1804-1812, Dec. 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26434 | - |
| dc.description.abstract | 隨著金氧半導體製程的日益進步,越來越多的電路被整合在單一的晶片中。而在這些高效能的積體電路中,尤其是微處理器及記憶體系統,時脈產生電路扮演著重要的腳色之一。
在過去,產生時脈信號,減少其延遲時間的方法,是利用相位鎖定迴路來實現。但隨著延遲鎖定迴路的提出,越來越多應用中,已經採用延遲鎖定迴路來取代相位鎖定迴路。原因是相較於相位鎖定迴路,延遲鎖定迴路具有必然穩定及較佳的信號抖動特性。 然而,延遲鎖定迴路存在著鎖定範圍限制的缺點,以致於難以應用在需要寬頻率操作的電子系統中,且難以成為矽智產。尤其是在產生九十度的時脈信號上,輸出信號的精確度則受限於元件本身的匹配程度。為了改善上述的問題,本論文以討論現今技術的限制為出發,並提出改進的方法。 在產生九十度的時脈信號上,論文中提出一個以延遲鎖定迴路為基礎的相位位移電路。所提出的技巧,實現了一個600MHz的相位位移電路,可以產生0o, 90o, 180o 和270o以符合不同應用範圍。 在此論文中,也提出了三種改善傳統延遲鎖定迴路的鎖定範圍限制的方法,使得電路的工作頻率範圍能夠增加。首先是提出改善鎖定範圍的相位偵測器,使得當延遲鎖定迴路輸出信號延遲時間超過鎖定範圍時,能自動校正。我們實現了一個1.5GHz到5GHz的延遲鎖定迴路。其次,我們提出一個壓控三角波延遲線,使得延遲鎖定迴路可於工作頻率下產生0o至360o相位移,因此延遲鎖定迴路的工作頻率範圍得以增加,運用該壓控延遲線的延遲鎖定迴路可工作於50MHz到500MHz。最後,論文中提出一個利用相位偵測輔助電路,來調整壓控延遲線的延遲,來改善鎖定範圍的限制。並且提出一種補償方法,使得電壓源雜訊對控延遲線的影響能夠降低。運用所提出的方法,延遲鎖定迴路的操作電源可由1.4V至0.9V內工作,模擬顯示,當操作電源有10mV的雜訊時,該電路在2GHz的輸出信號抖動為15.9ps。 論文中所提出的四種改進方法,將可使得延遲鎖定迴路在不同應用中提供更佳的可靠度。 | zh_TW |
| dc.description.abstract | With the advance of the CMOS process, more and more circuits are integrated into a single chip. In the high-performance integrated circuits, the clock generator plays one of the important roles, especially in the microprocessor and memory system.
In the past, clock deskew and generation for the quadrature-phase are realized by the phase-locked loops (PLLs). However, with the development of the delay-locked loops (DLLs), it has been widely adopted to replace the PLLs in more and more applications. It is because its unconditional stable and better jitter performance than the PLLs. However, the DLLs have the finite range problem. It is hard to be applied in the electric system with wide operation frequency range and become a Silicon Intellectual Property (SIP). To generate the quadrature-phase, its accuracy is limited by the matching between components. To eliminate the above problems, this dissertation starts from the discussion of the limitation from previous works and provides the methods to improve its performance. To have the quadrature-phase clock, a variable phase shift circuit based on DLL is proposed. With this technique, a DLL which generates the phase shift of 0o, 90o, 180o and 270o at 600MHz is presented for different applications. Three techniques to resolve the range problem of the DLL are also presented. First, a proposed phase detector is described. It corrects the range problem when it occurs and enlarges the operation frequency of the DLL. A DLL based on the proposed technique is designed to operate from 1.5GHz to 5GHz. Second, a voltage-controlled sawtooth delay line is described. With this delay line, a DLL generates phase shift from 0o to 360o from 50MHz to 500MHz is presented. In the end, a window detector is presented to change the initial delay of the VCDL. Therefore, the range problem of the DLL can be avoided. Meanwhile, a compensation technique for reducing the sensitivity for the supply noise on the VCDL is also presented. Utilizing the proposed circuits, the DLL can operate at supply from 1.4V to 0.9V. The simulated peak-to-peak jitter is 15.9ps at 2GHz when supply noise is 10mV. Four techniques presented in this dissertation make the DLL more reliable for different applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:10:08Z (GMT). No. of bitstreams: 1 ntu-97-D91943009-1.pdf: 3688559 bytes, checksum: 8947de804e3b5aabeae01a5dc698435c (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | CHAPTER 1 INTRODUCTION OF THE DELAY-LOCKED LOOPS 1
1.1. INTRODUCTION OF THE DELAY-LOCKED LOOPS 1 1.2. THEORY OF THE DELAY-LOCKED LOOPS 2 1.3. LIMITATION OF THE RANGE PROBLEM FOR DLLS 6 1.4. PREVIOUS SOLUTIONS 7 1.5. THESIS ORGANIZATION 12 CHAPTER2 A DLL-BASED VARIABLE-PHASE CLOCK BUFFER 14 2.1. INTRODUCTION 14 2.2. CIRCUIT DESCRIPTION 16 2.3. DESIGN EXAMPLES 20 2.4. EXPERIMENTAL RESULTS 24 2.5. SUMMARY 28 CHAPTER 3 AN ANTI-HARMONIC LOCK TECHNIQUE FOR DELAY-LOCKED LOOPS 29 3.1. INTRODUCTION 29 3.2. PHASE DETECTOR WITH ANTI-HARMONIC LOCK CAPABILITY 30 3.3. CIRCUIT DESCRIPTION 41 3.4. SIMULATION RESULTS 44 CHAPTER 4 AN INFINITE PHASE SHIFT DELAY-LOCKED LOOP WITH VOLTAGE-CONTROLLED SAWTOOTH DELAY LINE 48 4.1. INTRODUCTION 48 4.2. CIRCUIT DESCRIPTION 50 4.3. THE ANALYSIS OF THE PROPOSED VCSDL 59 4.4. EXPERIMENTAL RESULTS 62 4.5. CONCLUSIONS 69 CHAPTER 5 THE ON-CHIP CALIBRATION TECHNIQUES FOR REDUCING SUPPLY VOLTAGE VARIATION FOR VCDL 70 5.1. INTRODUCTION 70 5.2. ON-CHIP TECHNIQUE FOR REDUCING THE DC VARIATION OF THE SUPPLY VOLTAGE ON VCDL 71 5.3. ON-CHIP TECHNIQUE FOR REDUCING THE SUPPLY NOISE ON VCDL 74 5.4. CIRCUIT DESCRIPTION 80 5.5. SIMULATION RESULTS 85 5.6. SUMMARY 90 CHAPTER 6 CONCLUSIONS 91 6.1. CONCLUSIONS 91 6.2. FUTURE WORK 92 APPENDIX AN ALL-DIGITAL CLOCK GENERATOR FOR DYNAMIC FREQUENCY SCALING 94 A.1. INTRODUCTION 94 A.2. THE PROPOSED CLOCK GENERATOR 96 A.3. THE CYCLIC CLOCK MULTIPLIER 98 A.4. EXPERIMENTAL RESULTS 104 A.5. CONCLUSION 107 BIBLIOGRAPHY 108 PUBLICATIONS 113 | |
| dc.language.iso | en | |
| dc.subject | 時脈產生器 | zh_TW |
| dc.subject | 延遲鎖定迴路 | zh_TW |
| dc.subject | Clock generator | en |
| dc.subject | Delay-Locked Loop | en |
| dc.title | CMOS 寬頻延遲鎖定迴路之設計與應用 | zh_TW |
| dc.title | Design and Implementation of CMOS Wide-Range Delay-Locked Loop | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李泰成(Tai-Cheng Lee),楊清淵(Ching-Yuan Yang),林宗賢(Tsung-Hsien Lin),黃柏鈞(Po-Chiun Huang),汪重光(Chorng-Kuang Wang),鄭國興(Kuo-Hsing Cheng) | |
| dc.subject.keyword | 延遲鎖定迴路,時脈產生器, | zh_TW |
| dc.subject.keyword | Delay-Locked Loop,Clock generator, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-08-01 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
