Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26422
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬(Chun-Pin Lin)
dc.contributor.authorChung-Ting Tsaien
dc.contributor.author蔡忠廷zh_TW
dc.date.accessioned2021-06-08T07:09:41Z-
dc.date.copyright2008-08-04
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citation1. Hsieh K.H ., Liao K.H., Lai EH.H., Lee B.S., Lee CY., Lin CP ., A novel polyurethane-based root canal-obturation material and urethane acrylate-based root canal sealer - Part 1: Synthesis and evaluation of mechanical and thermal properties. J Endod 2008;34:303-305
2. Lee B.S., Lai EH.H., Liao K.H., Lee CY., Hsieh K.H ., Lin CP ., A novel polyurethane-based root canal-obturation material and urethane acrylate-based root canal sealer – Part 2: Evaluation of push-out bond strength. J Endod 2008;34:594-598
3. Torabinejad M., Ung B., Kettering J. D., In vitro bacterial penetration of coronally unsealed endodontically treated teeth. J Endod 1990; 16:566-569.
4. Siqueira J. F., Jr, Rôças IN, et al., Bacterial leakage in coronally unsealed root canals obturated with 3 different techniques. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000; 90:647–650.
5. Walton R. E., Torabinejad M., Principles and practice of endodontics, 3rd ed. Philadelphia: Saunders, 2002.
6. Gesi A., Raffaelli O., Goracci C., Pashley D. H., Tay F. R., Ferrari M., Interfacial strength of Resilon and gutta-percha to intraradicular dentin. J Endod 2005; 31:809 –813.
7. Lee K. W., Williams M. C., Camps J. J., Pashley D. H., Adhesion of endodontic sealers to dentin and gutta-percha. J Endod 2002;28:684–688.
8. Khayat A., Lee S. J., Torabinejad M., Human saliva penetration of coronally unsealed obturated root canals. J Endod 1993; 19:458–61.
9. Bender I. B., Freedland J. B., Adult root fracture. JADA 1983; 107:413-419
10. Williams C., Robert J. Loushine, R. Norman Weller, David H. Pashley, Franklin R. Tay., A comparison of cohesive strength and stiffness of Resilon and Gutta-Percha. J Endod 2006; 32: 553 –555.
11. Jia WT, Alpert B., Root canal filling material. United States Patent Application 20030113686, US Patent & Trademark Office, June 19, 2003.
12. Amass W., Amass A., Tighe B., A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer Int 1998; 47: 89 –144.
13. Shipper G., Ørstavik D., Teixeira F. B., Trope M., An evaluation of microbial leakage in roots filled with a thermoplastic synthetic polymer-based root canal filling material (Resilon). J Endod 2004; 30: 342–347.
14. Shipper G., Teixeira F. B., Arnold R. R., Trope M., Periapical inflammation after coronal microbial inoculation of dog roots filled with gutta-percha or Resilon. J Endod 2005; 31: 91– 96.
15. Teixeira F. B., Teixeira E. C., Thompson J. Y., Trope M., Fracture resistance of roots endodonticallytreated with a new resin filling material. J Am Dent Assoc 2004; 135: 646– 652.
16. Tay F. R., Loushine R., Weller N., et al., Ultrastructural evaluation of the apical seal in roots filled with a polycaprolactone-based root canal filling material. J Endod 2005; 31: 514 –519.
17. UngorM., Onay E. O., et al., Push-out bond strengths: the Epiphany–Resilonendodontic obturation system compared with different pairings of Epiphany, Resilon, AH Plus and gutta-percha. Int Endod J 2006; 39: 643–647.
18. Miner M. R., Berzins D. W., et al., A Comparison of Thermal Properties Between Gutta-Percha and a Synthetic Polymer Based Root Canal FillingMaterial (Resilon). J Endod 2006; 32: 683–686.
19. 1. C. Hepburn, Polyurethane Elastomers, 2nd ed., Elsevier Applied Science, London (1991).
20. Z. Wirpsza, Polyurethane: Chemistry, Technology and Applications, Ellis Horwood, New York (1993).
21. T.R. Hesketh, J.W.C. Van Bogart, and S.L. Cooper, Polym. Eng. Sci., 20, 190 (1980).
22. J.W.C. Van Bogart, D.A. Bluemke, and S.L. Cooper, Polymer, 22, 1428 (1981).
23. T.A. Speckhard, P.E. Gibson, S.L. Cooper, V.S.C. Chang, and J.P. Kennedy, Polymer, 26, 55 (1985).
24. L.M. Leung and J.T. Koberstein, J. Polym. Sci. Polym Phys. Ed., 23, 1883 (1985).
25. L.M. Leung and J.T. Koberstein, Macromolecules, 19, 706 (1986).
26. J.T. Koberstein, A.F. Galambos, and L.M. Leung, Macromolecules, 25, 6195 (1992).
27. J.T. Koberstein and L.M. Leung, Macromolecules, 25, 6205 (1992).
28. W. Hu and J.T. Koberstein, J. Polym. Sci. Polym. Phys., 32, 437 (1994).
29. Applications, Ellis Horwood, New York (1993Hsieh K. H., Tsai C. C., Tseng S. M., Vapor and gas permeability of polyurethane membranes. Part I. Structure-property relationship. J. Memb. Sci. 49 (1990) 341.
30. Pinchuk L (1994) J Biomater Sci Polym Ed 6(3):225
31. Thomas V, Kumari TV, Jayabalan M (2001) Biomacromolecules 2(2):588
32. Capone CD (1992) J Biomater Appl 7(2):108
33. Gunatillake PA, Meijs GF, Mccarthy SJ, Adhikari R, Sherriff N (1998) J Appl Polym Sci 69(8):1621
34. Harris RF, Joseph MD, Davidson C, Deporter CD, Dais VA (1990) J Appl Polym Sci 41(3):487
35. Xie XY, Li JH, Zhong YP, He CS, Fan CR (2002) Polym Mater Sci Eng 18(6):37
36. Hsu SH, Lin ZC (2004) Colloid Surf B 36(1):1
37. Hsieh K. H., Tsai C. C., Chang D. M., Vapor and gas permeability of polyurethane membranes. Part II. Effect of functional group. J. Memb. Sci. 56 (1991) 279.
38. Wang Z. F., Wang B., Ding X. M., Zhang M., Liu L. M., Qi N., Hu J. L., Effect of temperature and structure on the free volume and water vapor permeability in hydrophilic polyurethanes. J. Memb. Sci. 241 (2004) 355.
39. Hsieh T. T., Hsieh K. H., Simon G.. P., Tiu C., Interpenetrating polymer networks of 2-hydroxyethyl methacrylate terminated polyurethanes and polyurethanes. Polymer 40 (1999) 3153.
40. Maurice C.R., Earl l.v, Hugo Jo, Enzymatic Alcoholysis of Alkoxymethyl Alkanoates:a Possible Approach for the Kinetic Resolution of Tertiary Alcohols. Tetrahedron Letters 39 (1998) 8345-8348
41. Pencreac’h G, Baratti J.C., Hydrolysis of p-nitrophenyl palmitate in n-heptane by the Pseudomonas cepacia lipase: A simple test for the determination of lipase activity in organic media. Enzyme and Microbial Technology 18:417-422, 1996.
42. Bernstein* R, Derzon D.K., Gillen, K.T., Nylon 6.6 accelerated aging studies: thermaleoxidative degradation and its interaction with hydrolysis. Polymer Degradation and Stability 88 2005, 480-488.
43. Tay F.R., Pashley D.H., Williams M.C., Susceptibility of a Polycaprolactone-Based Root Canal Filling Material to Degradation. I. Alkaline Hydrolysis. JOE 2005; 31
44. Tay F.R, Pashley D.H., Yiu C.K.Y., Susceptibility of a Polycaprolactone-Based Root Canal Filling Material to Degradation. II. Gravimetric Evaluation of Enzymatic Hydrolysis. JOE 2005; 31.
45. Karayannidis G.P., Chatziavgoustis A.P., Achilias D.S., Poly(ethylene terephthalate) Recycling and Recovery of Pure Terephthalic Acid by Alkaline Hydrolysis. Advances in Polymer Technology 2002; Vol. 21, No. 4, 250–259.
46. Kim, H. D.; Kang, S. G.; Ha, C. S., Properties of UV-curable polyurethane acrylates for primary optical fiber coating. J Appl Polym Sci 1992, 46, 1339.
47. Jung, S. J.; Lee, S. J.; Cho, W. J.; Ha, C. S., Synthesis and properties of UV-curable waterborne unsaturated polyester for wood coating. J Appl Polym Sci 1998, 69, 695.
48. Huang, L. L. H.; Lee, P. C.; Chen, L. W.; Hsieh, K. H., Comparison of epoxides on grafting collagen to polyurethane and their effects on cellular growth. J Biomed Mater Res 1998, 39, 630.
49. Hepburn, C. Polyurethane Elastomers; Applied Science, 1982.
50. Hamouly, S. H.; Fayoumy, A. Z., Photo cross-linking of some unsaturated poly ether urethane. Mater Chem Phys 1998, 55, 122.
51. Cook, W. D., Kinetics and properties of a photopolymerized dimethacrylate oligomer. J Appl Polym Sci 1991, 42, 2209.
52. Reddy, A. V. R.; Subramanian, K.; Sainath, A. V. S., The synthesis and characterization of new polymerizable pyrimidines: Immobilization of the monomers onto hydrophilic graft copolymeric supports through radiation-induced copolymerization-grafting. J Appl PolymSci 1998, 70, 211.
53. Decker, C.; Bendaikha, T.; Decker, D.; Zahouily, K. Pol Preprint 1997, 38, 487.
54. Yu, X.; Grady, B. P.; Reiner, R. S.; Cooper, S. L., Mechanical and thermal properties of UV-curable polyurethane and polyurea acrylates. J Appl Polym Sci 1993, 49 1943.
55. Song, M. E.; Kim, J. Y.; Suh, K. D., Thermo-responsive isopropylacrylamide -vinylpyrrolidone copolymer by radiation polymerization. J Appl Polym Sci 1996, 62, 1775.
56. Bird R.B., Stewart W.E., Lightfood E.N., Transport Phenomena, 2nd Edition. John Wiley & Sons 2002, Ch.8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26422-
dc.description.abstract本研究主要利用聚胺酯以及胺酯壓克力樹酯以研發牙科根管填充材料。實驗將分為根管填充材以及封填劑兩部份。根管填充材部分主要是利用聚胺酯做為材料基質,並使用氧化鋅做為填充料,開發應用於牙科根管填充針之氧化鋅及聚胺酯複合材料。結果顯示以聚碳酸酯型聚胺酯做為基材之氧化鋅聚胺酯複合材料在牙科根管填充材有相當大的發展潛力。機械性質方面,聚碳酸酯型聚胺酯做為基材之氧化鋅聚胺酯複合材料已高於臨床上常用的牙科根管填充材;熱性質方面聚胺酯相較於臨床材料之熔點,聚碳酸酯型聚胺酯的熔點較低;在水解性質測試上,聚碳酸酯型聚胺酯則表現出明顯的耐水解特性,其重量損失百分比相較於聚酯型聚碳酸酯為低。因此在根管填充針方面,聚碳酸酯型聚胺酯做為基材之氧化鋅聚胺酯複合材料於根管治療臨床應用尚有不少發展空間。
牙科根管填充封填劑,本部份利用可見光可硬化之胺酯壓克力樹酯做為基質,並使用三丙烯乙二醇雙丙烯酸酯做為稀釋單體提高胺酯壓克力樹酯於牙科根管封填劑上之可行性。結果顯示,以二異氰酸異佛爾酮作為異氰酸鹽之胺酯壓克力樹酯以七比三之重量比例和三丙烯乙二醇雙丙烯酸酯之混合樹酯黏度最適當,並以樟腦醌及對二甲胺基苯甲酸乙酯之混合作為本系統樹酯之光起始劑,並添加偶氮二異丁腈做為熱起始劑,以雙凝聚合的方式使得硬化能更加完全。操作性方面,胺酯壓克力材料之流動性質已通過國際標準認證第六八七六號封填劑部分之最低標準。硬化深度測試上,相較於臨床使用之牙根管填充材,胺酯壓克力也有足夠的硬化深度。結果也指出,以胺酯壓克力和氧化鋅聚胺酯複合材料作為牙科根管填充封填劑和針,和牙齒的黏合度也較一般臨床使用之材料高。因此在根管填充封填劑方面,推測胺酯壓克力未來於根管治療臨床應用上之潛力極高。
zh_TW
dc.description.abstractThe purpose of this study was to develop a novel polymer-based root canal obturation material. Thermal polyurethane (TPU) was synthesized from polycarbonate-type polyol, and zinc oxide (ZnO) was added into TPU as filler to form the ZnO/TPU composite. Results showed that polycarbonate-type polyurethane and zinc oxide composite materials have great potential in root canal filling materials. In mechanical properties, it is shown that tensile strength and modulus of the ZnO/TPU composites can both be higher than gutta-percha and Resilon. For thermal properties, ZnO/TPU composite has lower melting than gutta-percha and Resilon. For hydrolysis test, polycarbonate-type polyurethane shows obvious properties of low-hydrolysis, explained by lower weight loss percentage than polyester-type polyurethane. Thus, it is found that ZnO/TPU composite still requires further investigations for clinical applications.
For the sealer resin part, visible-light photopolimerizable urethane-acrylate oligomer was synthesized and mixed with dilute monomer to form UA/TPGDA resin. The relative molecule weight, viscosities, bonding strength, interface between sealer and dentin were investigated in this research. Results indicate that the viscosity of UA/TPGDA resin can be altered by the TPGDA content. The photo-initiator for UA/TPGDA (7/3 by wt.) is the mixture of camphorquinone and ethyl 4-dimethylaminobenzoate (1/2 by wt.) with concentration 3 phr, and it includes AIBN, also with concentration 3 phr, which is used as a thermal-initiator. We anticipated that the dual-curing method will improve the curing depth of the present system, and results show that the curing depth is satisfactory for clinical application. In flow analysis test , urethane-acrylate has passed the lowest acceptable standard of ISO 6876. As for bonding strength, results show that bonding strength of the UA/TPGDA (7/3 by wt.) and polyester-type polyurethane which were used as sealer and cone is the highest of all other groups of sealer and cone. It is found that visible-light curable urethane-acrylate oligomer has great potential in the root canal filling material sealer.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:09:41Z (GMT). No. of bitstreams: 1
ntu-97-R95549024-1.pdf: 1471458 bytes, checksum: cdd08ed9cfe788861c012391cfb03cd1 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要 I
ABSTRACT II
CATALOG IV
TABLE INDEX VII
FIGURE INDEX VIII
CHAPTER 1. INTRODUCTION 1
1-1 Introduction of root canal obturation material 1
1-2 History of root canal material 3
1-3 Polyurethane and polycarbonate polyurethane 5
1-4 Hydrolysis 8
1-4-1 Introduction of hydrolysis 8
1-4-2 Various use of hydrolysis analysis 9
1-5 Light-curable oligomers 11
CHAPTER 2. APPLICATION OF ZINC OXIDE/ POLYURETHANE COMPOSITE IN DENTAL ROOT CANAL OBTURATION CONE MATERIAL 12
2-1 Material and methods 12
2-1-1 Chemicals 12
2-1-2 Measurements 13
2-1-3 Procedure to Synthesize TPU and Preparation of TPU/ZnO Composite 14
2-1-4 TGA analysis 15
2-1-5 Mechanical properties analysis 15
2-1-6 Thermal properties analysis 16
2-1-7 Hydrolysis properties analysis 16
2-2 Results 17
2-2-1 FT-IR analysis 17
2-2-2 Mechanical properties analysis 17
2-2-3 Thermal properties analysis 18
2-2-4 TGA analysis 18
2-2-5 Hydrolysis properties analysis 19
2-3 Discussion 20
2-3-1 FT-IR analysis 20
2-3-2 Mechanical properties analysis 20
2-3-3 Thermal properties analysis 22
2-3-4 TGA analysis 23
2-3-5 Hydrolysis properties analysis 24
CHAPTER 3. APPLICATION OF DURAL-CURING URETHANE-ACRYLATE IN DENTAL ROOT CANAL OBTURATION SEALER 32
3-1 Material and methods 32
3-1-1 Chemicals 32
3-1-2 Measurements 34
3-1-3 Procedure to synthesize urethane-acrylate 35
3-1-4 GPC analysis 36
3-1-5 Viscosity analysis 36
3-1-6 Conversions analysis 36
3-1-7 Curing depth 37
3-1-8 Flow analysis 37
3-1-9 Bonding strength analysis 38
3-2 Results 41
3-2-1 Chemical reaction of urethane-acrylate synthesis 41
3-2-2 GPC analysis 41
3-2-3 Viscosity analysis 42
3-2-4 Selection of photoinitiator concentration through conversions 42
3-2-5 Curing depth analysis 42
3-2-6 Flow & viscosity analysis 43
3-2-7 Bonding strength analysis 43
3-3 Discussion 45
3-3-1 FT-IR analysis 45
3-3-2 GPC analysis 45
3-3-3 Selection of photoinitiator concentration through conversions 47
3-3-4 Curing depth analysis 47
3-3-5 Flow & viscosity analysis 48
3-3-6 Bonding strength analysis 50
CHAPTER 4. CONCLUSIONS 62
REFERENCE 63
dc.language.isoen
dc.title低水解型聚胺酯及雙凝聚合胺酯壓克力在牙科根管填充材料之應用zh_TW
dc.titleApplication of Low Hydrolysis Polyurethane and Dual Curing Urethane-acrylate in Root Canal Filling Materialen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.coadvisor謝國煌(Kuo-Huang Hsieh)
dc.contributor.oralexamcommittee韓錦鈴(Jin-Lin Han)
dc.subject.keyword聚胺酯,胺酯壓克力樹酯,牙科根管填充材料,水解,根管填充封填劑,zh_TW
dc.subject.keywordroot canal obturation material,TPU,urethane-acrylate,hydrolysis,sealer,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2008-08-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
1.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved