Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26394
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施永豐,王ㄧ中
dc.contributor.authorZoe Tzu-Yi Chenen
dc.contributor.author陳子儀zh_TW
dc.date.accessioned2021-06-08T07:08:42Z-
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-08-01
dc.identifier.citation1. Kempen JH, Mitchell P, Lee KE, et al. The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol. 2004;122:495-505.
2. Wu HM, Seet B, Yap EP, Saw SM, Lim TH, Chia KS. Does education explain ethnic differences in myopia prevalence? A population-based study of young adult males in Singapore. Optom Vis Sci. 2001;78:234-239.
3. Van Newkirk MR. The Hong Kong vision study: a pilot assessment of visual impairment in adults. Trans Am Ophthalmol Soc. 1997;95:715-749.
4. Lam CS, Edwards M, Millodot M, Goh WS. A 2-year longitudinal study of myopia progression and optical component changes among Hong Kong schoolchildren. Optom Vis Sci. 1999;76:370-380.
5. Edwards MH. The development of myopia in Hong Kong children between the ages of 7 and 12 years: a five-year longitudinal study. Ophthalmic Physiol Opt. 1999;19:286-294.
6. Lin LL, Shih YF, Hsiao CK, Chen CJ, Lee LA, Hung PT. Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J Formos Med Assoc. 2001;100:684-691.
7. Curtin BJ. Physiologic vs pathologic myopia: genetics vs environment. Ophthalmology. 1979;86:681-691.
8. Goss DA, Hampton MJ, Wickham MG. Selected review on genetic factors in myopia. J Am Optom Assoc. 1988;59:875-884.
9. Feldkamper M, Schaeffel F. Interactions of genes and environment in myopia. Dev Ophthalmol. 2003;37:34-49.
10. Mutti DO, Mitchell GL, Moeschberger ML, Jones LA, Zadnik K. Parental myopia, near work, school achievement, and children's refractive error. Invest Ophthalmol Vis Sci. 2002;43:3633-3640.
11. Wong TY, Foster PJ, Hee J, et al. Prevalence and Risk Factors for Refractive Errors in Adult Chinese in Singapore. Invest Ophthalmol Vis Sci. 2000;41:2486-2494.
12. Edmund J, Goldschmidt E. [Concordance for myopia and discordance for optic disk cupping in a pair of monozygotic twins]. Klin Monatsbl Augenheilkd. 1988;193:645-646.
13. Chu R, Ni P, Ni M, Shen F. Genetic epidemiology study of pathological myopia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2000;17:178-180.
14. Goldschmidt E. The importance of heredity and environment in the etiology of low myopia. Acta Ophthalmol (Copenh). 1981;59:759-762.
15. Lin LL, Shih YF, Hsiao CK, Chen CJ, Lee LA, Hung PT. Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J Formos Med Assoc. 2001;100:684-691.
16. Lin LL, Hung LF, Shih YF, Hung PT, Ko LS. Correlation of optical components with ocular refraction among teen- agers in Taipei. Acta Ophthalmol Suppl. 1988;185:69-73.
17. Pacella R, McLellan J, Grice K, Del Bono EA, Wiggs JL, Gwiazda JE. Role of genetic factors in the etiology of juvenile-onset myopia based on a longitudinal study of refractive error. Optom Vis Sci. 1999;76:381-386.
18. Lin LL, Chen CJ. Twin study on myopia. Acta Genet Med Gemellol (Roma ). 1987;36:535-540.
19. Rada JA, Shelton S, Norton TT. The sclera and myopia. Exp Eye Res. 2006;82:185-200.
20. Phillips JR, Khalaj M, McBrien NA. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci. 2000;41:2028-2034.
21. Siegwart JT, Jr., Norton TT. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Vision Res. 1999;39:387-407.
22. Moring AG, Baker JR, Norton TT. Modulation of glycosaminoglycan levels in tree shrew sclera during lens-induced myopia development and recovery. Invest Ophthalmol Vis Sci. 2007;48:2947-2956.
23. Rada JA, Nickla DL, Troilo D. Decreased proteoglycan synthesis associated with form deprivation myopia in mature primate eyes. Invest Ophthalmol Vis Sci. 2000;41:2050-2058.
24. Saltarelli D, Wildsoet C, Nickla D, Troilo D. Susceptibility to form-deprivation myopia in chicks is not altered by an early experience of axial myopia. Optom Vis Sci. 2004;81:119-126.
25. Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Invest Ophthalmol Vis Sci. 1996;37:1380-1395.
26. Siegwart JT, Jr., Norton TT. The time course of changes in mRNA levels in tree shrew sclera during induced myopia and recovery. Invest Ophthalmol Vis Sci. 2002;43:2067-2075.
27. Siegwart JT, Jr., Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci. 2005;46:3484-3492.
28. Jobling AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 2004;279:18121-18126.
29. McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22:307-338.
30. Phillips JR, Khalaj M, McBrien NA. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci. 2000;41:2028-2034.
31. Siegwart JT, Jr., Norton TT. Regulation of the mechanical properties of tree shrew sclera by the visual environment. Vision Res. 1999;39:387-407.
32. Rada JA, Achen VR, Perry CA, Fox PW. Proteoglycans in the human sclera. Evidence for the presence of aggrecan. Invest Ophthalmol Vis Sci. 1997;38:1740-1751.
33. Johnson JM, Young TL, Rada JA. Small leucine rich repeat proteoglycans (SLRPs) in the human sclera: identification of abundant levels of PRELP. Mol Vis. 2006;12:1057-1066.
34. Schonherr E, Witsch-Prehm P, Harrach B, Robenek H, Rauterberg J, Kresse H. Interaction of biglycan with type I collagen. J Biol Chem. 1995;270:2776-2783.
35. Rada JA, Cornuet PK, Hassell JR. Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res. 1993;56:635-648.
36. Svensson L, Narlid I, Oldberg A. Fibromodulin and lumican bind to the same region on collagen type I fibrils. FEBS Lett. 2000;470:178-182.
37. Scott JE. Proteodermatan and proteokeratan sulfate (decorin, lumican/fibromodulin) proteins are horseshoe shaped. Implications for their interactions with collagen. Biochemistry. 1996;35:8795-8799.
38. Rada JA, McFarland AL, Cornuet PK, Hassell JR. Proteoglycan synthesis by scleral chondrocytes is modulated by a vision dependent mechanism. Curr Eye Res. 1992;11:767-782.
39. McBrien NA, Lawlor P, Gentle A. Scleral remodeling during the development of and recovery from axial myopia in the tree shrew. Invest Ophthalmol Vis Sci. 2000;41:3713-3719.
40. Moring AG, Baker JR, Norton TT. Modulation of glycosaminoglycan levels in tree shrew sclera during lens-induced myopia development and recovery. Invest Ophthalmol Vis Sci. 2007;48:2947-2956.
41. Scott JE. Proteoglycan: collagen interactions in connective tissues. Ultrastructural, biochemical, functional and evolutionary aspects. [Review] [22 refs]. International Journal of Biological Macromolecules. 1991;13:157-161.
42. Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, Birk DE. Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice. Invest Ophthalmol Vis Sci. 2003;44:2422-2432.
43. Austin BA, Coulon C, Liu CY, Kao WW, Rada JA. Altered collagen fibril formation in the sclera of lumican-deficient mice. Invest Ophthalmol Vis Sci. 2002;43:1695-1701.
44. Deere M, Johnson J, Garza S, et al. Characterization of human DSPG3, a small dermatan sulfate proteoglycan. Genomics. 1996;38:399-404.
45. Fisher LW, Heegaard AM, Vetter U, et al. Human biglycan gene. Putative promoter, intron-exon junctions, and chromosomal localization. J Biol Chem. 1991;266:14371-14377.
46. Pulkkinen L, Alitalo T, Krusius T, Peltonen L. Expression of decorin in human tissues and cell lines and defined chromosomal assignment of the gene locus (DCN). Cytogenetics & Cell Genetics. 1992;60:107-111.
47. Young TL, Ronan SM, Alvear AB, et al. A second locus for familial high myopia maps to chromosome 12q. Am J Hum Genet. 1998;63:1419-1424.
48. Schwartz M, Haim M, Skarsholm D. X-linked myopia: Bornholm eye disease. Linkage to DNA markers on the distal part of Xq. Clin Genet. 1990;38:281-286.
49. Grover J, Chen XN, Korenberg JR, Roughley PJ. The human lumican gene. Organization, chromosomal location, and expression in articular cartilage. J Biol Chem. 1995;270:21942-21949.
50. Farbrother JE, Kirov G, Owen MJ, Pong-Wong R, Haley CS, Guggenheim JA. Linkage analysis of the genetic loci for high myopia on 18p, 12q, and 17q in 51 U.K. families. Invest Ophthalmol Vis Sci. 2004;45:2879-2885.
51. Majava M, Bishop PN, Hagg P, et al. Novel mutations in the small leucine-rich repeat protein/proteoglycan (SLRP) genes in high myopia. Hum Mutat. 2007;28:336-344.
52. Lin LL, Chen CJ, Hung PT, Ko LS. Nation-wide survey of myopia among schoolchildren in Taiwan, 1986. Acta Ophthalmol Suppl. 1988;185:29-33.
53. Lin LL, Shih YF, Hsiao CK, Chen CJ, Lee LA, Hung PT. Epidemiologic study of the prevalence and severity of myopia among schoolchildren in Taiwan in 2000. J Formos Med Assoc. 2001;100:684-691.
54. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science. 2002;296:2225-2229.
55. Schaid DJ. Relative efficiency of ambiguous vs. directly measured haplotype frequencies. Genet Epidemiol. 2002;23:426-443.
56. Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69:138-147.
57. Moore JH, Williams SM. New strategies for identifying gene-gene interactions in hypertension. Ann Med. 2002;34:88-95.
58. Moore JH, Gilbert JC, Tsai CT, et al. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol. 2006;241:252-261.
59. Stram DO, Haiman CA, Hirschhorn JN, et al. Choosing haplotype-tagging SNPS based on unphased genotype data using a preliminary sample of unrelated subjects with an example from the Multiethnic Cohort Study. Hum Hered. 2003;55:27-36.
60. Rioux JD, Daly MJ, Silverberg MS, et al. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat Genet. 2001;29:223-228.
61. Paluru PC, Scavello GS, Ganter WR, Young TL. Exclusion of lumican and fibromodulin as candidate genes in MYP3 linked high grade myopia. Mol Vis. 2004;10:917-922.
62. Majava M, Bishop PN, Hagg P, et al. Novel mutations in the small leucine-rich repeat protein/proteoglycan (SLRP) genes in high myopia. Hum Mutat. 2007;28:336-344.
63. Rada JA, Cornuet PK, Hassell JR. Regulation of corneal collagen fibrillogenesis in vitro by corneal proteoglycan (lumican and decorin) core proteins. Exp Eye Res. 1993;56:635-648.
64. Vogel KG, Paulsson M, Heinegard D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochemical Journal. 1984;223:587-597.
65. Austin BA, Coulon C, Liu CY, Kao WW, Rada JA. Altered collagen fibril formation in the sclera of lumican-deficient mice. Invest Ophthalmol Vis Sci. 2002;43:1695-1701.
66. Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, Birk DE. Ocular and scleral alterations in gene-targeted lumican-fibromodulin double-null mice. Invest Ophthalmol Vis Sci. 2003;44:2422-2432.
67. Siegwart JT, Jr., Strang CE. Selective modulation of scleral proteoglycan mRNA levels during minus lens compensation and recovery. Mol Vis. 2007;13:1878-1886.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26394-
dc.description.abstract近視鞏膜薄化與眼球增長的主要導因正是鞏膜基質的重塑現象。人類鞏膜中small leucine-rich proteoglycans (SLRPs) 扮演調節膠原微纖維(collagen fibrils)聚集與互動的重要角色,進而影響鞏膜的機械特性及眼軸增長。與家族性高度近視有連鎖關係的染色體12q21-23 (MYP 3)區段正是三個SLRP genes所在,它們是decorin、lumican、及dermatan sulfate proteoglycan 3 (DSPG-3) genes。
藉由高度近視實驗組120人及對照組137人,吾人評估decorin、lumican、及 DSPG3 genes的單核苷酸多型性(single nucleotide polymorphism,SNP)及單倍型(haplotype)與台灣人高度近視易感性的相關性。吾人分別在此三基因選出四個、八個、及四個單核苷酸多型性以定序(direct DNA sequencing)方式進行基因定型。其中,lumican gene SNP rs3759223: T>C 與高度近視有相當顯著的相關性 (p=2.83×10-4)。四個lumican SNPs 具有顯著連鎖不平衡(linkage disequilibrium,LD),並且形成haplotype block。吾人以Sliding-window單倍型分析(haplotype analysis)方式發現,rs3759223 與 rs3741834 組成的haplotype profile 與高度近視有顯著的相關性 (global p = 1.0725 ×10-6)。特定單倍型測試(Haplotype-specific tests) 則顯示 C-C 與T-C haplotypes與高度近視有顯著的相關性,風險比odds ratios (95%信賴區間 confidence interval,CI) 分別為19.32 (2.55-146.54) 及 0.69(0.46-1.04)。 高度近視患者中帶有C-C haplotype者,傾向有較長的眼軸長與較深的近視度數。rs3759223 與 rs3741834 皆位於lumican gene 的調控區段,因此得以影響鞏膜膠原微纖維生成(collagen fibrillogenesis)及近視形成。Multifactor dimensionality reduction (MDR) 分析的結果,同樣再度證實此單區域相關性(single-locus association),並且推算lumican gene rs2300588 與rs3741834 間具有明顯的雙區域互動模式(two-locus interaction model)存在。
Lumican gene 調控區段的基因變異,也就是rs3759223 與 rs3741834之所在,可能與台灣華人的高度近視易感性(high myopia susceptibility)有相關性,因此,本區段相當值得進ㄧ步探討與研究!
zh_TW
dc.description.abstractScleral thinning and eyeball elongation in myopic eyes are related to the remodeling of scleral extracellular matrices. Small Leucine-Rich Proteoglycans (SLRPs) in human sclera play an important role in regulating the assembly and interaction of collagen fibrils, which influence scleral mechanical properties and axial elongation. Mutations in SLRP genes have been reported in common high myopia. Chromosome 12q21-23 (MYP 3), linked with certain familial high myopia, includes three SLRP genes, which are decorin, lumican, and dermatan sulfate proteoglycan 3 (DSPG-3).
By 120 cases and 137 controls, we evaluated the association of SNPs and haplotypes at the decorin, lumican, and DSPG3 genes with high myopia susceptibility in Taiwanese patients. We genotyped 4, 8, and 4 SNPs, respectively, within these three genes by using direct DNA sequencing. The lumican gene SNP rs3759223: T>C showed significant associations with high myopia (p=2.83×10-4). Four lumican SNPs showed significant linkage disequilibrium and formed a haplotype block. Sliding-window haplotype analyses revealed that the block consisting of rs3759223 and rs3741834 showed significant goodness of fit (global p = 1.0725 ×10-6). Haplotype-specific tests showed that the C-C and T-C haplotypes were significantly associated with high myopia, with odds ratios (95% confidence interval) of 19.32 (2.55-146.54) and 0.69(0.46-1.04), respectively. In high myopia cases, those with C-C haplotype tend to have more severe myopia and longer axial length. rs3759223 and rs3741834 are in putative regulatory element of lumican gene which influences fibrillogenesis of scleral collagen fibers and the myopia development. The results of a multifactor dimensionality reduction (MDR) analysis corroborated the single-locus association and suggested a significant two-locus interaction model composed of SNPs rs2300588 and rs3741834 in the lumican gene.
Genetic variation in regulatory domains of the lumican gene, where both rs3759223 and rs3741834 locate, in Han Chinese may be associated with high myopia susceptibility, making this region worthy of further investigation!
en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:08:42Z (GMT). No. of bitstreams: 1
ntu-97-P95421018-1.pdf: 519789 bytes, checksum: 06371edd3ce20b7ad19cdea0e1edfa21 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents序言………………………………………………………………I
中文摘要………………………………………………………………II
英文摘要………………………………………………………………IV
表目錄………………………………………………………………VII
圖目錄………………………………………………………………VIII
第一章 研究背景…………………………………………………………1
第一節 近視為舉世最常見之眼疾,在華人其嚴重性尤甚………………………………………………………………1
第二節 近視的病因及遺傳性………………………………………………………………1
第三節 近視鞏膜的結構、機械性與生化變化………………………………………………………………2
第四節 鞏膜蛋白聚糖(PROTEOGLYCAN,PG)………………………………………………………………3
第五節 定位高度近視基因的重要性………………………………………………………………4
第六節 單核苷酸多型性(SNP)分析………………………………………………………………5
第二章 研究目的…………………………………………………………6
第三章 研究方法與步驟………………………………………………………………7
第一節 研究對象………………………………………………………………7
第二節 樣本與分析………………………………………………………………7
第三節 資料分析………………………………………………………………9
第四章 研究成果………………………………………………………………11
第五章 討論………………………………………………………………14
參考文獻………………………………………………………………26
表目錄
表一、DECORIN、LUMICAN、與DSPG3 基因內挑選出的SNPS 及聚合酶鏈反應之引子設計..........................17
表二、實驗與對照組的組成性別與年齡..................................................18
表三、DECORIN、LUMICAN、與DSPG3 基因型與高度近視的相關性及哈溫平
衡評估..........................................................................................................................19
表四、LUMICAN GENE 的基因型頻率,基因型與高度近視的相關性和風險比,
及連鎖不平衡評估......................................................................................................20
表五、LUMICAN GENE 單倍型頻率估計值及單倍型與高度近視的相關性和風險
評估..............................................................................................................................21
表六之ㄧ、C-C HAPLOTYPE 對高度近視組眼軸長之影響..................................22
表六之二、C-C HAPLOTYPE 對高度近視組近視度數之影響..............................22
表七、LUMICAN GENE 雙倍型在實驗對照組的分佈及造成高度近視的風險評估
.....................................................................................................................................23
圖目錄
圖一、LUMICAN GENE SNPS 之連鎖不平衡結構圖及HAPLOTYPE BLOCK 推
算.................................................................................................................................24
圖二之ㄧ、高度近視風險的MDR 基因互動模式..................................................25
圖二之二、高度近視風險的基因互動樹狀圖..........................................................25
dc.language.isozh-TW
dc.title高度近視與鞏膜基質成份基因單核苷酸多型性及其單倍型之相關性zh_TW
dc.titleThe association of single nucleotide polymorphism and haplotype at the decorin, lumican, and dermatan sulfate proteoglycan 3 (DSPG3) genes with susceptibility to high myopiaen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林隆光,蕭朱杏,陳祈玲
dc.subject.keyword高度近視,單核&#33527,酸多型性單倍型,關聯性,實驗對照,zh_TW
dc.subject.keywordhigh myopia,single nucleotide polymorphism,haplotype,lumican,association,case-control study,en
dc.relation.page32
dc.rights.note未授權
dc.date.accepted2008-08-01
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
507.61 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved