Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26374
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 許麗卿 | |
dc.contributor.author | Ying-Hsi Lin | en |
dc.contributor.author | 林映希 | zh_TW |
dc.date.accessioned | 2021-06-08T07:08:02Z | - |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-12 | |
dc.identifier.citation | Agarwal, R., and Kaye, S.B. (2003). Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3, 502-516.
Alessi, D.R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., and Hemmings, B.A. (1996). Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 15, 6541-6551. Bader, A.G., Kang, S., and Vogt, P.K. (2006). Cancer-specific mutations in PIK3CA are oncogenic in vivo. Proc Natl Acad Sci U S A 103, 1475-1479. Balendran, A., Casamayor, A., Deak, M., Paterson, A., Gaffney, P., Currie, R., Downes, C.P., and Alessi, D.R. (1999). PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9, 393-404. Barnes, M.N., Grizzle, W.E., Grubbs, C.J., and Partridge, E.E. (2002). Paradigms for primary prevention of ovarian carcinoma. CA Cancer J Clin 52, 216-225. Bellacosa, A., Testa, J.R., Staal, S.P., and Tsichlis, P.N. (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254, 274-277. Berkenblit, A., and Cannistra, S.A. (2005). Advances in the management of epithelial ovarian cancer. J Reprod Med 50, 426-438. Blume-Jensen, P., and Hunter, T. (2001). Oncogenic kinase signalling. Nature 411, 355-365. Burgering, B.M., and Coffer, P.J. (1995). Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599-602. Caro, A.A., and Cederbaum, A.I. (2006). Role of phosphatidylinositol 3-kinase/AKT as a survival pathway against CYP2E1-dependent toxicity. J Pharmacol Exp Ther 318, 360-372. Carpten, J.D., Faber, A.L., Horn, C., Donoho, G.P., Briggs, S.L., Robbins, C.M., Hostetter, G., Boguslawski, S., Moses, T.Y., Savage, S., et al. (2007). A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448, 439-444. Chen, H., Ma, Z., Vanderwaal, R.P., Feng, Z., Gonzalez-Suarez, I., Wang, S., Zhang, J., Roti Roti, J.L., and Gonzalo, S. (2011). The mTOR inhibitor rapamycin suppresses DNA double-strand break repair. Radiat Res 175, 214-224. Cheng, J.Q., Godwin, A.K., Bellacosa, A., Taguchi, T., Franke, T.F., Hamilton, T.C., Tsichlis, P.N., and Testa, J.R. (1992). AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A 89, 9267-9271. Coffer, P.J., and Woodgett, J.R. (1991). Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 201, 475-481. Datta, S.R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241. Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., and Dedhar, S. (1998). Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A 95, 11211-11216. Deng, C.X. (2006). BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res 34, 1416-1426. DiSaia, P.J., and Bloss, J.D. (2003). Treatment of ovarian cancer: new strategies. Gynecol Oncol 90, S24-32. Feng, J., Park, J., Cron, P., Hess, D., and Hemmings, B.A. (2004). Identification of a PKB/Akt hydrophobic motif Ser-473 kinase as DNA-dependent protein kinase. J Biol Chem 279, 41189-41196. Franke, T.F., Yang, S.I., Chan, T.O., Datta, K., Kazlauskas, A., Morrison, D.K., Kaplan, D.R., and Tsichlis, P.N. (1995). The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81, 727-736. Greenlee, R.T., Hill-Harmon, M.B., Murray, T., and Thun, M. (2001). Cancer statistics, 2001. CA Cancer J Clin 51, 15-36. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., and Yonezawa, K. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189. Harada, H., Andersen, J.S., Mann, M., Terada, N., and Korsmeyer, S.J. (2001). p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 98, 9666-9670. Hill, M.M., Feng, J., and Hemmings, B.A. (2002). Identification of a plasma membrane Raft-associated PKB Ser473 kinase activity that is distinct from ILK and PDK1. Curr Biol 12, 1251-1255. Hirai, H., Sootome, H., Nakatsuru, Y., Miyama, K., Taguchi, S., Tsujioka, K., Ueno, Y., Hatch, H., Majumder, P.K., Pan, B.S., et al. (2010). MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9, 1956-1967. Inoki, K., Li, Y., Zhu, T., Wu, J., and Guan, K.L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4, 648-657. Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M.A., Hall, A., and Hall, M.N. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6, 1122-1128. Kaku, T., Ogawa, S., Kawano, Y., Ohishi, Y., Kobayashi, H., Hirakawa, T., and Nakano, H. (2003). Histological classification of ovarian cancer. Med Electron Microsc 36, 9-17. Kang, S., Bader, A.G., and Vogt, P.K. (2005). Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci U S A 102, 802-807. Kim, D.H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943-1947. Liu, A.X., Testa, J.R., Hamilton, T.C., Jove, R., Nicosia, S.V., and Cheng, J.Q. (1998). AKT2, a member of the protein kinase B family, is activated by growth factors, v-Ha-ras, and v-src through phosphatidylinositol 3-kinase in human ovarian epithelial cancer cells. Cancer Res 58, 2973-2977. Lynch, D.K., Ellis, C.A., Edwards, P.A., and Hiles, I.D. (1999). Integrin-linked kinase regulates phosphorylation of serine 473 of protein kinase B by an indirect mechanism. Oncogene 18, 8024-8032. Mayo, L.D., and Donner, D.B. (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98, 11598-11603. McGuire, W.P., 3rd, and Markman, M. (2003). Primary ovarian cancer chemotherapy: current standards of care. Br J Cancer 89 Suppl 3, S3-8. Narod, S.A., and Foulkes, W.D. (2004). BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4, 665-676. Nave, B.T., Ouwens, M., Withers, D.J., Alessi, D.R., and Shepherd, P.R. (1999). Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem J 344 Pt 2, 427-431. Nicholson, K.M., and Anderson, N.G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14, 381-395. Page, C., Lin, H.J., Jin, Y., Castle, V.P., Nunez, G., Huang, M., and Lin, J. (2000). Overexpression of Akt/AKT can modulate chemotherapy-induced apoptosis. Anticancer Res 20, 407-416. Parsons, R. (2004). Human cancer, PTEN and the PI-3 kinase pathway. Semin Cell Dev Biol 15, 171-176. Paull, T.T., Rogakou, E.P., Yamazaki, V., Kirchgessner, C.U., Gellert, M., and Bonner, W.M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10, 886-895. Paweletz, C.P., Charboneau, L., Bichsel, V.E., Simone, N.L., Chen, T., Gillespie, J.W., Emmert-Buck, M.R., Roth, M.J., Petricoin, I.E., and Liotta, L.A. (2001). Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981-1989. Peng, D.J., Wang, J., Zhou, J.Y., and Wu, G.S. (2010). Role of the Akt/mTOR survival pathway in cisplatin resistance in ovarian cancer cells. Biochem Biophys Res Commun 394, 600-605. Pliarchopoulou, K., and Pectasides, D. (2011). Epithelial ovarian cancer: Focus on targeted therapy. Crit Rev Oncol Hematol 79, 17-23. Potter, C.J., Pedraza, L.G., and Xu, T. (2002). Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4, 658-665. Samuels, Y., and Velculescu, V.E. (2004). Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3, 1221-1224. Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S.M., Riggins, G.J., et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554. Santos, S.C., Lacronique, V., Bouchaert, I., Monni, R., Bernard, O., Gisselbrecht, S., and Gouilleux, F. (2001). Constitutively active STAT5 variants induce growth and survival of hematopoietic cells through a PI 3-kinase/Akt dependent pathway. Oncogene 20, 2080-2090. Sarbassov, D.D., Ali, S.M., Kim, D.H., Guertin, D.A., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14, 1296-1302. Sarbassov, D.D., Guertin, D.A., Ali, S.M., and Sabatini, D.M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101. Scully, R., Chen, J., Ochs, R.L., Keegan, K., Hoekstra, M., Feunteun, J., and Livingston, D.M. (1997). Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425-435. Shaw, M., Cohen, P., and Alessi, D.R. (1998). The activation of protein kinase B by H2O2 or heat shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated protein kinase-activated protein kinase-2. Biochem J 336 ( Pt 1), 241-246. Shayesteh, L., Lu, Y., Kuo, W.L., Baldocchi, R., Godfrey, T., Collins, C., Pinkel, D., Powell, B., Mills, G.B., and Gray, J.W. (1999). PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21, 99-102. Shoji, K., Oda, K., Nakagawa, S., Hosokawa, S., Nagae, G., Uehara, Y., Sone, K., Miyamoto, Y., Hiraike, H., Hiraike-Wada, O., et al. (2009). The oncogenic mutation in the pleckstrin homology domain of AKT1 in endometrial carcinomas. Br J Cancer 101, 145-148. Siddik, Z.H. (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265-7279. Stambolic, V., Suzuki, A., de la Pompa, J.L., Brothers, G.M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J.M., Siderovski, D.P., and Mak, T.W. (1998). Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29-39. Su, T.T. (2006). Cellular responses to DNA damage: one signal, multiple choices. Annu Rev Genet 40, 187-208. Sun, M., Wang, G., Paciga, J.E., Feldman, R.I., Yuan, Z.Q., Ma, X.L., Shelley, S.A., Jove, R., Tsichlis, P.N., Nicosia, S.V., et al. (2001). AKT1/PKBalpha kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 cells. Am J Pathol 159, 431-437. Szanto, A., Bognar, Z., Szigeti, A., Szabo, A., Farkas, L., and Gallyas, F., Jr. (2009). Critical role of bad phosphorylation by Akt in cytostatic resistance of human bladder cancer cells. Anticancer Res 29, 159-164. Testa, J.R., and Bellacosa, A. (2001). AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98, 10983-10985. Toker, A., and Newton, A.C. (2000). Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem 275, 8271-8274. Tummala, M.K., and McGuire, W.P. (2005). Recurrent ovarian cancer. Clin Adv Hematol Oncol 3, 723-736. Virdee, K., Parone, P.A., and Tolkovsky, A.M. (2000). Phosphorylation of the pro-apoptotic protein BAD on serine 155, a novel site, contributes to cell survival. Curr Biol 10, R883. Wendel, H.G., De Stanchina, E., Fridman, J.S., Malina, A., Ray, S., Kogan, S., Cordon-Cardo, C., Pelletier, J., and Lowe, S.W. (2004). Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332-337. West, K.A., Castillo, S.S., and Dennis, P.A. (2002). Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5, 234-248. Yuan, Z.Q., Sun, M., Feldman, R.I., Wang, G., Ma, X., Jiang, C., Coppola, D., Nicosia, S.V., and Cheng, J.Q. (2000). Frequent activation of AKT2 and induction of apoptosis by inhibition of phosphoinositide-3-OH kinase/Akt pathway in human ovarian cancer. Oncogene 19, 2324-2330. Zhao, L., Wientjes, M.G., and Au, J.L. (2004). Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res 10, 7994-8004. Zhou, B.P., Liao, Y., Xia, W., Zou, Y., Spohn, B., and Hung, M.C. (2001). HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3, 973-982. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26374 | - |
dc.description.abstract | 分子標靶藥物結合傳統細胞毒殺治療的應用在增強抗癌反應上似乎已成為新的治療策略。於人類的癌症中常見到PI3K/Akt/mTOR訊息途徑失常,且此訊息途徑異常也容易導致對化學治療產生抗藥性。MK-2206為一Akt抑制劑,可抑制癌細胞的增生。
於此,我們證實了MK-2206與cisplatin或taxol的合併治療可提升cisplatin或 taxol對卵巢癌細胞SKOV3 (Akt表現活化)和ES2 (Akt未表現活化)的作用。於taxol或cisplatin的治療中再給予MK-2206可加強抑制細胞增生的作用。合併治療可能是藉由抑制Akt及其下游受質4E-BP1和p70S6K的磷酸化,恢復因taxol或cisplatin所降低的p53表現,或減低Bcl-2蛋白來提升藥效。此外,我們於兩株卵巢癌細胞中都發現MK-2206可提高細胞內活性氧化物的生成,這可能會導致細胞凋零。另一方面,MK-2206可抑制BRCA1在cisplatin所造成的DNA損壞處聚集,這可能會使DNA無法修復。 所有的結果指出,Akt抑制劑MK-2206可能透過不同的機制來影響不同的卵巢癌細胞。不論癌細胞的Akt活化與否,MK-2206都可提升現在常用於臨床上之細胞毒殺劑之效用。 | zh_TW |
dc.description.abstract | The application of molecular targeted agents in combination with traditional cytotoxic regimens seems to be a promising therapeutic strategy to increase antitumor response. Abnormalities in the PI3K/Akt/mTOR signaling pathway are common in human cancers and contribute to chemotherapy resistance. MK-2206 is an Akt inhibitor known to inhibit cancer cell proliferation.
Here, we demonstrate an enhanced response to combination treatment of MK-2206 with either cisplatin or taxol in the ovarian cancer cell lines SKOV3 (with constitutively active Akt) and ES2 (with inactive Akt). Taxol or cisplatin followed by MK-2206 treatment synergistically inhibited cell proliferation. This combination was effective in promoting cell death by inhibiting Akt phosphorylation and downregulating its downstream effectors, p-4E-BP1 (Thr37/46) and p-p70S6K (Thr389), in SKOV3 cells, restoring p53 level which was downregulated after taxol or cisplatin treatment in ES2 cells, and downregulating pro-survival Bcl-2 protein in both SKOV3 cells and ES2 cells. In addition, we found that intracellular ROS generation was increased in both ovarian cancer cell lines after MK-2206 treatment, that may lead to apoptosis. Moreover, MK-2206 could suppress BRCA1 foci formation at DNA damage sites induced by cisplatin that may affect DNA repair. The overall results indicate that Akt inhibitor MK-2206 may augment the efficacy of existing cytotoxic agents through different mechanisms in either Akt active or inactive ovarian cancer cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:08:02Z (GMT). No. of bitstreams: 1 ntu-100-R98423012-1.pdf: 2971063 bytes, checksum: e5f310325d3991e81fdd1b2a7f9a97cd (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………………………………… i
致謝………………………………………………………………………………… ii中文摘要…………………………………………………………………………… iii Abstract…………………………………………………………………………….. iv Contents…………………………………………………………………………….. vi List of Figures……………………………………………………………………… viii List of Tables……………………………………………………………………….. x Chapter 1 Introduction………………………………………………………….. 1 1.1 Ovarian cancer and standard treatment……………………………………. 1 1.2 Activation of PI3K/Akt signaling pathway in human cancer and drug resistance…………………………………………………………..…. 3 1.3 MK-2206, an allosteric Akt inhibitor…………………………………….... 7 1.4 BRCA1 and DNA repair............................................................................... 8 Chapter 2 Objectives…………………………………………….......................... 20 Chapter 3 Materials and methods……………………………………………..…. 23 3.1 Drugs and chemicals……………………………………………………..…. 23 3.2 Cell lines and cell culture…………………………………………………… 23 3.3 Cell growth and MTT cytotoxicity assay………………………………...… 23 3.4 Flow cytometric analysis of cell cycle and apoptosis……………………… 24 3.5 Western blot analysis……………………………………………………….. 25 3.6 Detection of intracellular reactive oxygen species (ROS) generation……… 26 3.7 Immunofluorescence staining………………………………………………. 26 3.8 Combination index (CI) analysis…………………………………………… 27 3.9 Statistical analysis………………………………………………………….. 27 Chapter 4 Results…………………………………………………………………. 30 4.1 MK-2206 potentiates taxol induced growth inhibition in a drug sequence dependent manner………………………………………………… 30 4.2 p-Akt and its downstream effectors are downregulated by taxol and MK-2206 combination in Akt constitutively active cells……………... 31 4.3 The pro-survival Bcl-2 protein level is diminished by taxol/MK-2206 treatment in SKOV3 and ES2 cells and the p53 protein level downregulated by taxol is reversed by taxol/MK-2206 combination in ES2 cells………..… 32 4.4 ROS is a mediater of the MK-2206 stimulated apoptosis………………….. 32 4.5 MK-2206 potentiates cisplatin induced growth inhibition in a drug sequence dependent manner………………………………………………… 33 4.6 p-Akt and its downstream effectors are downregulated by cisplatin and MK-2206 combination in Akt constitutively active cells…….. 34 4.7 The pro-survival Bcl-2 protein level is diminished by cisplatin/ MK-2206 treatment in SKOV3 and ES2 cells and p53 protein level downregulated by cisplatin is reversed by cisplatin/ MK-2206 combination in ES2 cells…………………………………..…….. 35 4.8 ROS is a mediater of the MK-2206 stimulated apoptosis………………….. 36 4.9 MK-2206 disrupts BRCA1 foci formation at DNA double-strand breaks induced by cisplatin……..…………………………………………... 36 Chapter 5 Discussion……………………………………………………………… 54 Chapter 6 Conclusion……………………………………………………………... 58 References…………………………………………………………………………….. 60 | |
dc.language.iso | en | |
dc.title | Akt抑制劑MK-2206可提升taxol和cisplatin對卵巢癌細胞的毒殺性 | zh_TW |
dc.title | An Akt inhibitor MK-2206 enhances the cytotoxicity of taxol and cisplatin in ovarian cancer cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳燕惠,沈麗娟 | |
dc.subject.keyword | Akt抑制劑,卵巢癌, | zh_TW |
dc.subject.keyword | Akt inhibitor,ovarian cancer, | en |
dc.relation.page | 66 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
Appears in Collections: | 藥學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-100-1.pdf Restricted Access | 2.9 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.