請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26278
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉仁沛 | |
dc.contributor.author | Li-Tien Lu | en |
dc.contributor.author | 呂理添 | zh_TW |
dc.date.accessioned | 2021-06-08T07:04:55Z | - |
dc.date.copyright | 2009-01-06 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-12-19 | |
dc.identifier.citation | Burdick, R. K. and Graybill, F. A. (1992). Confidence Intervals on Variance Components, Marcel Dekker, New York.
Burdick, R. K., Borror, C. M., and Montgomery, D. C. (2003). A review of methods for measurement systems capability analysis. Journal of Quality Technology, 35, 342–354. Clinical Laboratory Standard Institute (2004) EP5-A2 Evaluation of Precision Performance of Quantitative Measurement Methods; Approved Guideline, Second Edition. Wayne, PA, U.S.A. Colton, T. (1974). Statistics in Medicine, Little, Brown and Company, Boston, U.S.A. Falconer, D. S., and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics, Ed. 4, Longman Scientific and Technical, Harlow, Essex, UK. Graybill, F. A. (1976). Theory and Application of the Linear Model. Duxbury Press, North Scituate, Massachusetts. Graybill, F. A., Wang, C. M. (1980). Confidence intervals on nonnegative linear combinations of variances. J. Amer. Statist. Assoc. 75, 869–873. Hernandez, R. P., and Burdick, R. K. (1993). Confidence intervals and tests of hypothesis on variance components in an unbalanced two-factor crossed models with interactions. J. Statist. Comput. Simul., 47, 67-77. Hernandez, R. P., and Burdick, R. K. (1993). Confidence intervals on the total variance in an unbalanced two-fold nested design. Biometrical Journal, 35(5), 515–522. International Conference on Harmonization (1995). Tripartite Guideline Q2A: Test on Validation of Analytical Procedures. Khuri, A.I. (1987). An exact test for the nesting effect's variance component in an unbalanced random two-fold nested model, Statistics and Probability Letters, 5, 305-311. Khuri, A.I. (1987). Measures of imbalance for unbalanced data, Biometrical Journal, 29, 383-396. Khuri, A. I., Littell, R. C. (1987). Exact tests for the main effects variance components in an unbalanced random two-way model, Biometrics, 43, 545-560. Khuri, A. I., Mathew, T., Sinha, B. K. (1998). Statistical Tests for Mixed Linear Models, Wiley, New York. Lee, Y., Shao, J. and Chow, S. C. (2004). The modified large sample confidence intervals for linear combinations of variance components: extension, theory, and application. J. Amer. Statist. Assoc. 99, 467-478. Milliken, G. A. and Johnson, D. E. (1992). Analysis of Messy Data, Vol. I: Designed Experiments, Chapman and Hall, New York. Satterthwaite, F.E. (1946). An approximate distribution of estimates of variance components. Biometric Bull., 2, 110-114. Sen B, Graybill F, Ting N (1992) Confidence-intervals on ratios of. variance components for the unbalanced two-factor nested model. Biometical Journal, 34, 259–274. Sokal, R. R. and Rohlf, F. J. (1995). Biometry : the principles and practice of statistics in biological research, 3rd ed. New York : Freeman. Tang, S. and Tsui, K.W. (2007). Distributional properties for the generalized p-value for the Behrens-Fisher problem. Statistics and Probability Letters, 77, 1-8. Tsui, K.W., and Weerahandi, S. (1989). Generalized p-values in significance testing of hypothesis in the presence of nuisance parameters, Journal of the American Statistical Association. 84, 602-607. Wang, C. M., and Graybill, F. A. (1981). Confidence intervals on a ratio of variances in the two-factor nested components of variance model. Commun. Stat.-Theory Methods, A10, 1357–1368. Weerahandi, S. (1991). Testing variance components in mixed models with generalized p-values. J. Amer. Statist. Assoc. 86, 151-153. Weerahandi, S. (1993). Generalized confidence intervals. J. Amer. Statist. Assoc. 88, 899-905. Weerahandi, S. (1995). Exact Statistical Methods for Data Analysis, New York:Springer-Verlag. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26278 | - |
dc.description.abstract | 在雙向交叉或摺疊隨機模式中,變方成分函數之信賴區間的各種建構方法已見於文獻討論,然而利用這些近似法求得之信賴區間,其涵蓋機率(coverage probability)難免有嚴格或寬鬆等不確定性現象存在,對於不平衡模式的整體狀況並未全面調查研究,因此仍保有許多未知空間。
本論文應用Weerahandi所提出的廣義基準量(Generalized Pivotal Quantities, GPQs)統計方法的概念,在雙向交叉或摺疊隨機模式之變方成分函數,求得精確的信賴區間及進行統計推論,進一步檢定我們所感興趣的變方成分函數測度是否滿足預設的門檻值。這些統計檢定可應用於農工醫各領域中,如動植物育種上遺傳率之研究,量測工具重複性及再現性之管控研究,以及設備儀器檢測可靠性之評估研究等。本文透過電腦模擬(simulation),驗證此法信賴區間之涵蓋機率、平均區間長度及檢定力(power)之整體表現,並以實例數據來說明廣義基準量方法的應用。 | zh_TW |
dc.description.abstract | Various different approaches for constructing confidence interval for functions of variance components proposed under cross-classification or nested random-effects models. However, these approaches are approximate and their probability coverage is either conservative or liberal. Their performances under the imbalanced situations are not fully investigated and hence remain unknown. Therefore, we apply the concept of Generalized Pivotal Quantities (GPQs) to obtain the exact confidence intervals under the two-way cross-classification with interaction random-effects model and the two-stage nested random-effects model . The exact confidence interval can be used to test the hypothesis whether the interested measure of variance components exceeds a pre-specified threshold. This hypothesis can be applied to the heritability study of animal and plant breeding and the gauge repeatability and reproducibility (R&R) study and to the reliability in validation studies during the development of instruments. A large simulation study was conducted to empirically investigate the coverage probability and expected length of the proposed exact confidence intervals, and size and power of the proposed testing procedures based on the exact confidence intervals. Numeric data from public domains illustrate the applications of the proposed methods. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T07:04:55Z (GMT). No. of bitstreams: 1 ntu-97-D91621202-1.pdf: 17734658 bytes, checksum: 6ad7b35801d5900aaa89f484d3da2be4 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | CHAPTER 1 INTRODUCTION 1
CHAPTER 2 TWO-WAY CROSSED RANDOM-EFFECTS MODELS 4 2.1 CURRENT APPROXIMATE PROCEDURE 4 2.2 EXACT INTERVAL ESTIMATION 11 CHAPTER 3 TWO-STAGE NESTED RANDOM-EFFECTS MODELS 18 3.1 MODELS FOR PRECISION EVALUATION EXPERIMENTS 18 3.2 EXACT INFERENCE FOR THE TOTAL VARIANCE 24 3.3 CURRENT APPROXIMATE PROCEDURE AND EXACT INFERENCE FOR THE HERITABILITY 26 CHAPTER 4 SIMULATION STUDY 32 4.1 TWO-WAY CROSSED RANDOM-EFFECTS MODELS 32 4.2 TWO-STAGE NESTED RANDOM-EFFECTS MODELS FOR TOTAL VARIANCE 42 4.3 TWO-STAGE NESTED RANDOM-EFFECTS MODELS FOR HERITABILITY 57 CHAPTER 5 EXAMPLES 69 5.1 DATA ON EFFICIENCY SCORES FOR ASSEMBLY LINE WORKERS 69 5.2 THE GLUCOSE DATA FROM APPROVED CLSI GUIDELINE EP5-A2 75 5.3 THE BLOOD PH READING OF FEMALE MICE 84 CHAPTER 6 DISCUSSIONS AND REMARKS 89 REFERENCES 95 APPENDIX A 98 APPENDIX B 102 APPENDIX C 106 | |
dc.language.iso | en | |
dc.title | 雙向交叉或摺疊隨機模式之變方成分函數的統計推論及在遺傳率與檢測方法再現性的應用 | zh_TW |
dc.title | Statistical Inference for Functions of Variance Components
under Two-Way Crossed or Nested Random-Effects Models with Applications to Heritability and Reproducibility of Assay Validation | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 周賢忠,張啟仁,季瑋珠,廖振鐸 | |
dc.subject.keyword | 不平衡雙向交叉或摺疊隨機模式,變方成分函數的測度,涵蓋機率,型I誤差機率,檢定力,廣義基準量, | zh_TW |
dc.subject.keyword | Two-way unbalanced random-effects models,Measures of variance components,Coverage probability,Size,Power,Generalized pivotal quantity, | en |
dc.relation.page | 120 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-12-21 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 17.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。