Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26206
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor阮雪芬
dc.contributor.authorTsui-Chin Huangen
dc.contributor.author黃翠琴zh_TW
dc.date.accessioned2021-06-08T07:02:52Z-
dc.date.copyright2009-02-03
dc.date.issued2009
dc.date.submitted2009-01-23
dc.identifier.citationReference
1. Smigal, C. et al. Trends in breast cancer by race and ethnicity: update 2006. CA: a cancer journal for clinicians 56, 168-183 (2006).
2. Gupta, V., Harkin, D.P., Kawakubo, H. & Maheswaran, S. Transforming Growth Factor-beta superfamily: evaluation as breast cancer biomarkers and preventive agents. Current cancer drug targets 4, 165-182 (2004).
3. Hsieh, A.C. & Moasser, M.M. Targeting HER proteins in cancer therapy and the role of the non-target HER3. British journal of cancer 97, 453-457 (2007).
4. Fernandez Madrid, F. Autoantibodies in breast cancer sera: candidate biomarkers and reporters of tumorigenesis. Cancer letters 230, 187-198 (2005).
5. Jack, R.H., Davies, E.A. & Moller, H. Breast cancer incidence, stage, treatment and survival in ethnic groups in South East England. British journal of cancer (2009).
6. Rydberg, B. Radiation-induced DNA damage and chromatin structure. Acta oncologica (Stockholm, Sweden) 40, 682-685 (2001).
7. Moertel, C.G. Accomplishments in surgical adjuvant therapy for large bowel cancer. Cancer 70, 1364-1371 (1992).
8. Marchetti, P., Urien, S., Cappellini, G.A., Ronzino, G. & Ficorella, C. Weekly administration of paclitaxel: theoretical and clinical basis. Critical reviews in oncology/hematology 44 Suppl, S3-13 (2002).
9. Sigdel, T.K. & Sarwal, M.M. The proteogenomic path towards biomarker discovery. Pediatric transplantation 12, 737-747 (2008).
10. Scheel, J.R. & Kuo, M.D. Exploring the human genome in cancer with genomic approaches. J Vasc Interv Radiol 17, 1225-1233 (2006).
11. Keegan, L.P., Gallo, A. & O'Connell, M.A. The many roles of an RNA editor. Nature reviews 2, 869-878 (2001).
12. Krishna, R.G. & Wold, F. Post-translational modification of proteins. Advances in enzymology and related areas of molecular biology 67, 265-298 (1993).
13. Maniatis, T. & Tasic, B. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418, 236-243 (2002).
14. Jacobs, J.M. et al. Utilizing human blood plasma for proteomic biomarker discovery. Journal of proteome research 4, 1073-1085 (2005).
15. Bichsel, V.E., Liotta, L.A. & Petricoin, E.F., 3rd Cancer proteomics: from biomarker discovery to signal pathway profiling. Cancer journal (Sudbury, Mass 7, 69-78 (2001).
16. Ransohoff, D.F. Cancer. Developing molecular biomarkers for cancer. Science (New York, N.Y 299, 1679-1680 (2003).
17. Torabian, S. & Kashani-Sabet, M. Biomarkers for melanoma. Current opinion in oncology 17, 167-171 (2005).
18. Wang, Y., Balgley, B.M. & Lee, C.S. Tissue proteomics using capillary isoelectric focusing-based multidimensional separations. Expert review of proteomics 2, 659-667 (2005).
19. Yanagisawa, K. et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362, 433-439 (2003).
20. Conrads, T.P., Hood, B.L., Issaq, H.J. & Veenstra, T.D. Proteomic patterns as a diagnostic tool for early-stage cancer: a review of its progress to a clinically relevant tool. Mol Diagn 8, 77-85 (2004).
21. Hortin, G.L., Jortani, S.A., Ritchie, J.C., Jr., Valdes, R., Jr. & Chan, D.W. Proteomics: a new diagnostic frontier. Clinical chemistry 52, 1218-1222 (2006).
22. Brower, V. Proteomics: biology in the post-genomic era. Companies all over the world rush to lead the way in the new post-genomics race. EMBO reports 2, 558-560 (2001).
23. Anderson, N.L. & Anderson, N.G. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1, 845-867 (2002).
24. Bertucci, F., Birnbaum, D. & Goncalves, A. Proteomics of breast cancer: principles and potential clinical applications. Mol Cell Proteomics 5, 1772-1786 (2006).
25. Ornstein, D.K. & Petricoin, E.F., 3rd Proteomics to diagnose human tumors and provide prognostic information. Oncology (Williston Park, N.Y 18, 521-529; discussion 529-532 (2004).
26. Patton, W.F., Schulenberg, B. & Steinberg, T.H. Two-dimensional gel electrophoresis; better than a poke in the ICAT? Current opinion in biotechnology 13, 321-328 (2002).
27. Yuan, Q. & Zhao, F.K. New Frontiers in the Proteome Research Quantitative Proteomics. Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica 33, 477-482 (2001).
28. Fauq, A.H., Kache, R., Khan, M.A. & Vega, I.E. Synthesis of acid-cleavable light isotope-coded affinity tags (ICAT-L) for potential use in proteomic expression profiling analysis. Bioconjugate chemistry 17, 248-254 (2006).
29. Fischer, B. et al. Semi-supervised LC/MS alignment for differential proteomics. Bioinformatics (Oxford, England) 22, e132-140 (2006).
30. Salmi, J. et al. Quality classification of tandem mass spectrometry data. Bioinformatics (Oxford, England) 22, 400-406 (2006).
31. Cannataro, M. et al. The EIPeptiDi tool: enhancing peptide discovery in ICAT-based LC MS/MS experiments. BMC bioinformatics 8, 255 (2007).
32. Li, S. & Zeng, D. CILAT--a new reagent for quantitative proteomics. Chemical communications (Cambridge, England), 2181-2183 (2007).
33. Fu, C. et al. Quantitative analysis of redox-sensitive proteome with DIGE and ICAT. Journal of proteome research 7, 3789-3802 (2008).
34. Li, C. et al. Analysis of microdissected cells by two-dimensional LC-MS approaches. Methods in molecular biology (Clifton, N.J 428, 193-208 (2008).
35. Pisitkun, T. et al. High-throughput identification of IMCD proteins using LC-MS/MS. Physiological genomics 25, 263-276 (2006).
36. Elortza, F. et al. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. Journal of proteome research 5, 935-943 (2006).
37. Jensen, O.N. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Current opinion in chemical biology 8, 33-41 (2004).
38. Godovac-Zimmermann, J., Kleiner, O., Brown, L.R. & Drukier, A.K. Perspectives in spicing up proteomics with splicing. Proteomics 5, 699-709 (2005).
39. te Pas, M.F. & Claes, F. Functional genomics and proteomics for infectious diseases in the post-genomics era. Lancet 363, 1337 (2004).
40. Camacho-Carvajal, M.M., Wollscheid, B., Aebersold, R., Steimle, V. & Schamel, W.W. Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol Cell Proteomics 3, 176-182 (2004).
41. Issaq, H.J., Veenstra, T.D., Conrads, T.P. & Felschow, D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochemical and biophysical research communications 292, 587-592 (2002).
42. Sethuraman, M. et al. Isotope-coded affinity tag (ICAT) approach to redox proteomics: identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. Journal of proteome research 3, 1228-1233 (2004).
43. Yang, Y., Thannhauser, T.W., Li, L. & Zhang, S. Development of an integrated approach for evaluation of 2-D gel image analysis: Impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow. Electrophoresis 28, 2080-2094 (2007).
44. Bondar, O.P., Barnidge, D.R., Klee, E.W., Davis, B.J. & Klee, G.G. LC-MS/MS quantification of Zn-alpha2 glycoprotein: a potential serum biomarker for prostate cancer. Clinical chemistry 53, 673-678 (2007).
45. Huang, H.L. et al. Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/ MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis 27, 1641-1650 (2006).
46. Li, H. et al. Identification of Candidate Biomarker Proteins Released by Human Endometrial and Cervical Cancer Cells Using Two-Dimensional Liquid Chromatography/Tandem Mass Spectrometry. Journal of proteome research (2007).
47. Srivastava, S. & Srivastava, R.G. Proteomics in the forefront of cancer biomarker discovery. Journal of proteome research 4, 1098-1103 (2005).
48. Zhang, H. et al. Biomarker discovery for ovarian cancer using SELDI-TOF-MS. Gynecologic oncology 102, 61-66 (2006).
49. Bharti, A., Ma, P.C. & Salgia, R. Biomarker discovery in lung cancer--promises and challenges of clinical proteomics. Mass spectrometry reviews 26, 451-466 (2007).
50. Valle, R.P., Chavany, C., Zhukov, T.A. & Jendoubi, M. New approaches for biomarker discovery in lung cancer. Expert review of molecular diagnostics 3, 55-67 (2003).
51. Pawlik, T.M. et al. Proteomic analysis of nipple aspirate fluid from women with early-stage breast cancer using isotope-coded affinity tags and tandem mass spectrometry reveals differential expression of vitamin D binding protein. BMC cancer 6, 68 (2006).
52. Yu, L.R., Zhou, M., Conrads, T.P. & Veenstra, T.D. Diagnostic proteomics: serum proteomic patterns for the detection of early stage cancers. Disease markers 19, 209-218 (2003).
53. Zhang, Z. et al. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer research 64, 5882-5890 (2004).
54. Kumar, S., Mohan, A. & Guleria, R. Biomarkers in cancer screening, research and detection: present and future: a review. Biomarkers 11, 385-405 (2006).
55. Hayashi, E. et al. Proteomic profiling for cancer progression: Differential display analysis for the expression of intracellular proteins between regressive and progressive cancer cell lines. Proteomics 5, 1024-1032 (2005).
56. Cohen, M.S., Zhang, C., Shokat, K.M. & Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science (New York, N.Y 308, 1318-1321 (2005).
57. Fiser, A. & Sali, A. Modeller: generation and refinement of homology-based protein structure models. Methods in enzymology 374, 461-491 (2003).
58. Chou, K.C. Structural bioinformatics and its impact to biomedical science. Current medicinal chemistry 11, 2105-2134 (2004).
59. Jain, A.N. Virtual screening in lead discovery and optimization. Current opinion in drug discovery & development 7, 396-403 (2004).
60. Rognan, D. Chemogenomic approaches to rational drug design. British journal of pharmacology 152, 38-52 (2007).
61. Scapin, G. Structural biology and drug discovery. Current pharmaceutical design 12, 2087-2097 (2006).
62. Kitchen, D.B., Decornez, H., Furr, J.R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3, 935-949 (2004).
63. Alonso, H., Bliznyuk, A.A. & Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Medicinal research reviews 26, 531-568 (2006).
64. Cross, R.L. Molecular motors: turning the ATP motor. Nature 427, 407-408 (2004).
65. Kayalar, C., Rosing, J. & Boyer, P.D. An alternating site sequence for oxidative phosphorylation suggested by measurement of substrate binding patterns and exchange reaction inhibitions. The Journal of biological chemistry 252, 2486-2491 (1977).
66. Zheng, J. & Ramirez, V.D. Piceatannol, a stilbene phytochemical, inhibits mitochondrial F0F1-ATPase activity by targeting the F1 complex. Biochemical and biophysical research communications 261, 499-503 (1999).
67. Abrahams, J.P. et al. The structure of bovine F1-ATPase complexed with the peptide antibiotic efrapeptin. Proceedings of the National Academy of Sciences of the United States of America 93, 9420-9424 (1996).
68. Gogol, E.P., Lucken, U. & Capaldi, R.A. The stalk connecting the F1 and F0 domains of ATP synthase visualized by electron microscopy of unstained specimens. FEBS letters 219, 274-278 (1987).
69. Das, B., Mondragon, M.O., Sadeghian, M., Hatcher, V.B. & Norin, A.J. A novel ligand in lymphocyte-mediated cytotoxicity: expression of the beta subunit of H+ transporting ATP synthase on the surface of tumor cell lines. The Journal of experimental medicine 180, 273-281 (1994).
70. Moser, T.L. et al. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proceedings of the National Academy of Sciences of the United States of America 96, 2811-2816 (1999).
71. Martinez, L.O. et al. Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature 421, 75-79 (2003).
72. Arakaki, N., Kita, T., Shibata, H. & Higuti, T. Cell-surface H+-ATP synthase as a potential molecular target for anti-obesity drugs. FEBS letters 581, 3405-3409 (2007).
73. Moser, T.L. et al. Endothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proceedings of the National Academy of Sciences of the United States of America 98, 6656-6661 (2001).
74. Arakaki, N. et al. Possible role of cell surface H+ -ATP synthase in the extracellular ATP synthesis and proliferation of human umbilical vein endothelial cells. Mol Cancer Res 1, 931-939 (2003).
75. van Raaij, M.J., Abrahams, J.P., Leslie, A.G. & Walker, J.E. The structure of bovine F1-ATPase complexed with the antibiotic inhibitor aurovertin B. Proceedings of the National Academy of Sciences of the United States of America 93, 6913-6917 (1996).
76. Linnett, P.E. & Beechey, R.B. Inhibitors of the ATP synthethase system. Methods in enzymology 55, 472-518 (1979).
77. Ebel, R.E. & Lardy, H.A. Influence of aurovertin on mitochondrial ATPase activity. The Journal of biological chemistry 250, 4992-4995 (1975).
78. Issartel, J.P. & Vignais, P.V. Evidence for a nucleotide binding site on the isolated beta subunit from Escherichia coli F1-ATPase. Interaction between nucleotide and aurovertin D binding sites. Biochemistry 23, 6591-6595 (1984).
79. Alkhalaf, M. Resveratrol-induced growth inhibition in MDA-MB-231 breast cancer cells is associated with mitogen-activated protein kinase signaling and protein translation. Eur J Cancer Prev 16, 334-341 (2007).
80. Alkhalaf, M. et al. Resveratrol-induced apoptosis in human breast cancer cells is mediated primarily through the caspase-3-dependent pathway. Archives of medical research 39, 162-168 (2008).
81. Athar, M. et al. Resveratrol: a review of preclinical studies for human cancer prevention. Toxicology and applied pharmacology 224, 274-283 (2007).
82. Cucciolla, V. et al. Resveratrol: from basic science to the clinic. Cell cycle (Georgetown, Tex 6, 2495-2510 (2007).
83. Delmas, D., Lancon, A., Colin, D., Jannin, B. & Latruffe, N. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer. Current drug targets 7, 423-442 (2006).
84. Li, Y. et al. Resveratrol-induced cell inhibition of growth and apoptosis in MCF7 human breast cancer cells are associated with modulation of phosphorylated Akt and caspase-9. Applied biochemistry and biotechnology 135, 181-192 (2006).
85. Roccaro, A.M. et al. Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenstrom's macroglobulinemia. Clin Cancer Res 14, 1849-1858 (2008).
86. Yang, Y., Paik, J.H., Cho, D., Cho, J.A. & Kim, C.W. Resveratrol induces the suppression of tumor-derived CD4+CD25+ regulatory T cells. International immunopharmacology 8, 542-547 (2008).
87. Zykova, T.A. et al. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Molecular carcinogenesis 47, 797-805 (2008).
88. Bujanda, L. et al. Resveratrol inhibits nonalcoholic fatty liver disease in rats. BMC gastroenterology 8, 40 (2008).
89. Maulik, N. Reactive oxygen species drives myocardial angiogenesis? Antioxidants & redox signaling 8, 2161-2168 (2006).
90. Kolgazi, M., Sener, G., Cetinel, S., Gedik, N. & Alican, I. Resveratrol reduces renal and lung injury caused by sepsis in rats. The Journal of surgical research 134, 315-321 (2006).
91. Megli, F.M. & Sabatini, K. Mitochondrial phospholipid bilayer structure is ruined after liver oxidative injury in vivo. FEBS letters 573, 68-72 (2004).
92. Pervaiz, S. Chemotherapeutic potential of the chemopreventive phytoalexin resveratrol. Drug Resist Updat 7, 333-344 (2004).
93. Marier, J.F. et al. Metabolism and disposition of resveratrol in rats: extent of absorption, glucuronidation, and enterohepatic recirculation evidenced by a linked-rat model. The Journal of pharmacology and experimental therapeutics 302, 369-373 (2002).
94. Kuhnle, G. et al. Resveratrol is absorbed in the small intestine as resveratrol glucuronide. Biochemical and biophysical research communications 272, 212-217 (2000).
95. A, G., Vol. 26 59-861951).
96. Lockshin, R.A. & Zakeri, Z. Programmed cell death and apoptosis: origins of the theory. Nature reviews 2, 545-550 (2001).
97. Lockshin, R.A. & Williams, C.M. Programmed cell death--II. Endocrine potentiation of the breakdown of the intersegmental muscles of silkmoths. Journal of Insect Physiology 10, 643-649 (1964).
98. Kerr, J.F., Wyllie, A.H. & Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British journal of cancer 26, 239-257 (1972).
99. Leist, M. & Jaattela, M. Four deaths and a funeral: from caspases to alternative mechanisms. Nature reviews 2, 589-598 (2001).
100. Remillard, C.V. & Yuan, J.X. Activation of K+ channels: an essential pathway in programmed cell death. American journal of physiology 286, L49-67 (2004).
101. Saraste, A. & Pulkki, K. Morphologic and biochemical hallmarks of apoptosis. Cardiovascular research 45, 528-537 (2000).
102. Juan, H.F. et al. Proteomics analysis of a novel compound: cyclic RGD in breast carcinoma cell line MCF-7. Proteomics 6, 2991-3000 (2006).
103. Hirosawa, M., Hoshida, M., Ishikawa, M. & Toya, T. MASCOT: multiple alignment system for protein sequences based on three-way dynamic programming. Comput Appl Biosci 9, 161-167 (1993).
104. Menz, R.I., Walker, J.E. & Leslie, A.G. Structure of bovine mitochondrial F(1)-ATPase with nucleotide bound to all three catalytic sites: implications for the mechanism of rotary catalysis. Cell 106, 331-341 (2001).
105. Mpamhanga, C.P., Chen, B., McLay, I.M., Ormsby, D.L. & Lindvall, M.K. Retrospective docking study of PDE4B ligands and an analysis of the behavior of selected scoring functions. Journal of chemical information and modeling 45, 1061-1074 (2005).
106. Venkatachalam, C.M., Jiang, X., Oldfield, T. & Waldman, M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. Journal of molecular graphics & modelling 21, 289-307 (2003).
107. Krammer, A., Kirchhoff, P.D., Jiang, X., Venkatachalam, C.M. & Waldman, M. LigScore: a novel scoring function for predicting binding affinities. Journal of molecular graphics & modelling 23, 395-407 (2005).
108. Brooks, B.R. et al. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. 4, 187-217 (1983).
109. Huang, T.C. et al. An apoptosis-related gene network induced by novel compound-cRGD in human breast cancer cells. FEBS letters 581, 3517-3522 (2007).
110. Garcia-Closas, M. & Chanock, S. Genetic susceptibility loci for breast cancer by estrogen receptor status. Clin Cancer Res 14, 8000-8009 (2008).
111. Olopade, O.I., Grushko, T.A., Nanda, R. & Huo, D. Advances in breast cancer: pathways to personalized medicine. Clin Cancer Res 14, 7988-7999 (2008).
112. Johnson, J.A. et al. The Nrf2-ARE pathway: an indicator and modulator of oxidative stress in neurodegeneration. Annals of the New York Academy of Sciences 1147, 61-69 (2008).
113. Craven, R.A. & Banks, R.E. Understanding and managing renal cell carcinoma: can proteomic studies contribute to clinical practice? Contributions to nephrology 160, 88-106 (2008).
114. Petrik, V., Loosemore, A., Howe, F.A., Bell, B.A. & Papadopoulos, M.C. OMICS and brain tumour biomarkers. British journal of neurosurgery 20, 275-280 (2006).
115. Lin, Y. et al. Proteins associated with disease and clinical course in pancreas cancer: a proteomic analysis of plasma in surgical patients. Journal of proteome research 5, 2169-2176 (2006).
116. Thongboonkerd, V. & Malasit, P. Renal and urinary proteomics: current applications and challenges. Proteomics 5, 1033-1042 (2005).
117. Wulfkuhle, J.D., Paweletz, C.P., Steeg, P.S., Petricoin, E.F., 3rd & Liotta, L. Proteomic approaches to the diagnosis, treatment, and monitoring of cancer. Advances in experimental medicine and biology 532, 59-68 (2003).
118. Petricoin, E.E., Paweletz, C.P. & Liotta, L.A. Clinical applications of proteomics: proteomic pattern diagnostics. Journal of mammary gland biology and neoplasia 7, 433-440 (2002).
119. Mowery, Y.M. & Pizzo, S.V. Targeting cell surface F(1)F(0) ATP synthase in cancer therapy. Cancer biology & therapy 7 (2008).
120. Zhang, X. et al. Dual functions of a monoclonal antibody against cell surface F1F0 ATP synthase on both HUVEC and tumor cells. Acta pharmacologica Sinica 29, 942-950 (2008).
121. Sabapathy, K. & Nam, S.Y. Defective MHC class I antigen surface expression promotes cellular survival through elevated ER stress and modulation of p53 function. Cell death and differentiation 15, 1364-1374 (2008).
122. Zhang, L.H., Kamanna, V.S., Zhang, M.C. & Kashyap, M.L. Niacin inhibits surface expression of ATP synthase beta chain in HepG2 cells: implications for raising HDL. Journal of lipid research 49, 1195-1201 (2008).
123. Jung, K.H. et al. Direct targeting of tumor cell F(1)F(0) ATP-synthase by radioiodine angiostatin in vitro and in vivo. Cancer biotherapy & radiopharmaceuticals 22, 704-712 (2007).
124. Vantourout, P., Martinez, L.O., Fabre, A., Collet, X. & Champagne, E. Ecto-F1-ATPase and MHC-class I close association on cell membranes. Molecular immunology 45, 485-492 (2008).
125. Yamamoto, K. et al. Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells. Am J Physiol Heart Circ Physiol 293, H1646-1653 (2007).
126. Champagne, E., Martinez, L.O., Collet, X. & Barbaras, R. Ecto-F1Fo ATP synthase/F1 ATPase: metabolic and immunological functions. Current opinion in lipidology 17, 279-284 (2006).
127. Kim, B.W., Choo, H.J., Lee, J.W., Kim, J.H. & Ko, Y.G. Extracellular ATP is generated by ATP synthase complex in adipocyte lipid rafts. Experimental & molecular medicine 36, 476-485 (2004).
128. Veitonmaki, N. et al. Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for k1-5-induced antiangiogenesis. Cancer research 64, 3679-3686 (2004).
129. Lee, A.S. GRP78 induction in cancer: therapeutic and prognostic implications. Cancer research 67, 3496-3499 (2007).
130. Racek, T. et al. Transcriptional repression of the prosurvival endoplasmic reticulum chaperone GRP78/BIP by E2F1. The Journal of biological chemistry 283, 34305-34314 (2008).
131. Luo, S., Mao, C., Lee, B. & Lee, A.S. GRP78/BiP is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development. Molecular and cellular biology 26, 5688-5697 (2006).
132. Lee, A.S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods (San Diego, Calif 35, 373-381 (2005).
133. Wang, X.Z. et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. The EMBO journal 17, 5708-5717 (1998).
134. Sherman, M. & Multhoff, G. Heat shock proteins in cancer. Annals of the New York Academy of Sciences 1113, 192-201 (2007).
135. Rand, J.H. 'Annexinopathies'--a new class of diseases. The New England journal of medicine 340, 1035-1036 (1999).
136. Balch, C. & Dedman, J.R. Annexins II and V inhibit cell migration. Experimental cell research 237, 259-263 (1997).
137. Jorgensen, A.J., Bennekou, P., Eskesen, K. & Kristensen, B.I. Annexins from Ehrlich ascites cells inhibit the calcium-activated chloride current in Xenopus laevis oocytes. Pflugers Arch 434, 261-266 (1997).
138. Patel, M.I., Kurek, C. & Dong, Q. The arachidonic acid pathway and its role in prostate cancer development and progression. The Journal of urology 179, 1668-1675 (2008).
139. Koch, C.A. et al. Does the expression of c-kit (CD117) in neuroendocrine tumors represent a target for therapy? Annals of the New York Academy of Sciences 1073, 517-526 (2006).
140. Schnirer, II, Yao, J.C. & Ajani, J.A. Carcinoid--a comprehensive review. Acta oncologica (Stockholm, Sweden) 42, 672-692 (2003).
141. Brown, A., Gartner, S., Kawano, T., Benoit, N. & Cheng-Mayer, C. HLA-A2 down-regulation on primary human macrophages infected with an M-tropic EGFP-tagged HIV-1 reporter virus. Journal of leukocyte biology 78, 675-685 (2005).
142. De Leon, E.J., Alcaraz, M.J., Dominguez, J.N., Charris, J. & Terencio, M.C. A new chloroquinolinyl chalcone derivative as inhibitor of inflammatory and immune response in mice and rats. The Journal of pharmacy and pharmacology 55, 1313-1321 (2003).
143. William, F., Mroczkowski, B., Cohen, S. & Kraft, A.S. Differentiation of HL-60 cells is associated with an increase in the 35-kDa protein lipocortin I. Journal of cellular physiology 137, 402-410 (1988).
144. Laufer, E.M., Reutelingsperger, C.P., Narula, J. & Hofstra, L. Annexin A5: an imaging biomarker of cardiovascular risk. Basic research in cardiology 103, 95-104 (2008).
145. Kenis, H. et al. Annexin A5 inhibits engulfment through internalization of PS-expressing cell membrane patches. Experimental cell research 312, 719-726 (2006).
146. Green, A.M. & Steinmetz, N.D. Monitoring apoptosis in real time. Cancer journal (Sudbury, Mass 8, 82-92 (2002).
147. Shiota, M. et al. Ets regulates peroxiredoxin1 and 5 expressions through their interaction with the high-mobility group protein B1. Cancer science 99, 1950-1959 (2008).
148. Kim, J.H. et al. Up-regulation of peroxiredoxin 1 in lung cancer and its implication as a prognostic and therapeutic target. Clin Cancer Res 14, 2326-2333 (2008).
149. De Simoni, S., Goemaere, J. & Knoops, B. Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+. Neuroscience letters 433, 219-224 (2008).
150. Neumann, C.A. & Fang, Q. Are peroxiredoxins tumor suppressors? Current opinion in pharmacology 7, 375-380 (2007).
151. Quan, C. et al. Enhanced expression of peroxiredoxin I and VI correlates with development, recurrence and progression of human bladder cancer. The Journal of urology 175, 1512-1516 (2006).
152. Prochownik, E.V. Functional and physical communication between oncoproteins and tumor suppressors. Cell Mol Life Sci 62, 2438-2459 (2005).
153. Imanishi, H. et al. Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. Journal of human genetics 52, 166-171 (2007).
154. Mertens, A.C. et al. XRCC1 and glutathione-S-transferase gene polymorphisms and susceptibility to radiotherapy-related malignancies in survivors of Hodgkin disease. Cancer 101, 1463-1472 (2004).
155. Darnay, B.G., Reddy, S.A. & Aggarwal, B.B. Identification of a protein kinase associated with the cytoplasmic domain of the p60 tumor necrosis factor receptor. The Journal of biological chemistry 269, 20299-20304 (1994).
156. Russo, D. et al. Coexpression of anionic glutathione-S-transferase (GST pi) and multidrug resistance (mdr1) genes in acute myeloid and lymphoid leukemias. Leukemia 8, 881-884 (1994).
157. Moscow, J.A. et al. Expression of anionic glutathione-S-transferase and P-glycoprotein genes in human tissues and tumors. Cancer research 49, 1422-1428 (1989).
158. Morris, P.G. & Fornier, M.N. Microtubule active agents: beyond the taxane frontier. Clin Cancer Res 14, 7167-7172 (2008).
159. Bogoch, Y. & Linial, M. Coordinated expression of cytoskeleton regulating genes in the accelerated neurite outgrowth of P19 embryonic carcinoma cells. Experimental cell research 314, 677-690 (2008).
160. Zhong, Z. et al. Remodeling of centrosomes in intraspecies and interspecies nuclear transfer porcine embryos. Cell cycle (Georgetown, Tex 6, 1510-1520 (2007).
161. Lee, H. et al. The microtubule plus end tracking protein Orbit/MAST/CLASP acts downstream of the tyrosine kinase Abl in mediating axon guidance. Neuron 42, 913-926 (2004).
162. Deryugina, E.I., Bourdon, M.A., Reisfeld, R.A. & Strongin, A. Remodeling of collagen matrix by human tumor cells requires activation and cell surface association of matrix metalloproteinase-2. Cancer research 58, 3743-3750 (1998).
163. Chasis, J.A., Prenant, M., Leung, A. & Mohandas, N. Membrane assembly and remodeling during reticulocyte maturation. Blood 74, 1112-1120 (1989).
164. El Marzouk, S. et al. Rho GDP dissociation inhibitor alpha interacts with estrogen receptor alpha and influences estrogen responsiveness. Journal of molecular endocrinology 39, 249-259 (2007).
165. Zhang, B. Rho GDP dissociation inhibitors as potential targets for anticancer treatment. Drug Resist Updat 9, 134-141 (2006).
166. Siderovski, D.P. & Willard, F.S. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. International journal of biological sciences 1, 51-66 (2005).
167. Elazar, Z., Mayer, T. & Rothman, J.E. Removal of Rab GTP-binding proteins from Golgi membranes by GDP dissociation inhibitor inhibits inter-cisternal transport in the Golgi stacks. The Journal of biological chemistry 269, 794-797 (1994).
168. Takai, Y. et al. Rho small G protein and cytoskeletal control. Princess Takamatsu symposia 24, 338-350 (1994).
169. Kim, S.J. & Noguchi, S. [Prediction of response to docetaxel in breast cancer]. Gan to kagaku ryoho 35, 190-193 (2008).
170. Yeghiazaryan, K. et al. Irradiated breast cancer patients demonstrate subgroup-specific regularities in protein expression patterns of circulating leukocytes. Cancer genomics & proteomics 4, 411-418 (2007).
171. Noguchi, S. Predictive factors for response to docetaxel in human breast cancers. Cancer science 97, 813-820 (2006).
172. Myung, J.K., Afjehi-Sadat, L., Felizardo-Cabatic, M., Slavc, I. & Lubec, G. Expressional patterns of chaperones in ten human tumor cell lines. Proteome science 2, 8 (2004).
173. Bach, J.P., Rinn, B., Meyer, B., Dodel, R. & Bacher, M. Role of MIF in inflammation and tumorigenesis. Oncology 75, 127-133 (2008).
174. Shimizu, T. Role of macrophage migration inhibitory factor (MIF) in the skin. Journal of dermatological science 37, 65-73 (2005).
175. Li, Y., Lu, C., Xing, G., Zhu, Y. & He, F. Macrophage migration inhibitory factor directly interacts with hepatopoietin and regulates the proliferation of hepatoma cell. Experimental cell research 300, 379-387 (2004).
176. Nishihira, J. et al. Macrophage migration inhibitory factor (MIF): Its potential role in tumor growth and tumor-associated angiogenesis. Annals of the New York Academy of Sciences 995, 171-182 (2003).
177. Hudson, J.D. et al. A proinflammatory cytokine inhibits p53 tumor suppressor activity. The Journal of experimental medicine 190, 1375-1382 (1999).
178. Mareschi, K. et al. Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K+ channel types. Experimental hematology 34, 1563-1572 (2006).
179. Friedrichs, N., Vorreuther, R., Fischer, H.P., Wiestler, O.D. & Buettner, R. Neurocytoma arising in the pelvis. Virchows Arch 443, 217-219 (2003).
180. Chambonniere, M.L., Mosnier-Damet, M. & Mosnier, J.F. Expression of microtubule-associated protein tau by gastrointestinal stromal tumors. Human pathology 32, 1166-1173 (2001).
181. Scatena, R., Bottoni, P., Pontoglio, A., Mastrototaro, L. & Giardina, B. Glycolytic enzyme inhibitors in cancer treatment. Expert opinion on investigational drugs 17, 1533-1545 (2008).
182. Agani, F. & Semenza, G.L. Mersalyl is a novel inducer of vascular endothelial growth factor gene expression and hypoxia-inducible factor 1 act
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26206-
dc.description.abstract將標靶藥物治療專一的特性應用於癌症的治療上,可提高療效,縮短療程,並降低傳統化學治療進行時所產生的副作用。本篇研究分析了乳癌病理組織的蛋白質表現圖譜,且發現癌化組織具有ATP合成酶的高度表現。以往認為ATP合成酶只會出現於粒線體內膜上,然而在本研究中發現,ATP合成酶會表現於乳癌細胞表面,縱使其功能未知,仍舊可以做為辨識癌細胞的標靶分子。當給予ATP合成酶抑制劑時,乳癌細胞會受到毒殺,但對於給予相同劑量抑制劑的正常細胞則無影響。本篇研究發現,ATP合成酶抑制劑會經由細胞凋亡的路徑抑制乳癌細胞生長,並導致細胞週期停止於G0/G1期。此外,本篇研究亦指出,ATP合成酶抑制劑會活化caspase參與的訊息傳遞路徑,進而誘導細胞凋亡。這項發現提供了另一類的抗癌化合物─ATP合成抑制劑─可做為治療乳癌及其他癌症的標靶藥物。zh_TW
dc.description.abstractTargeting therapy is one of the most promising approaches to increase the efficiency of anticancer treatment, thus the investigation into potential targets has become an important research topic in cancer therapy. In this study, we carried out a proteome-based analysis on human breast cancer tissues to probe into the tumor-specific protein expression in breast carcinoma. Conventionally, ATP synthase was believed to be localized in the mitochondrial inner membrane and served as an energy protein complex. Our study indicated that ATP synthase was abundant in tumor tissues and was also present on the plasma membrane surface of breast cancer cells. Aurovertin B, an ATP synthase inhibitor, has strong inhibition on the proliferation of several breast cancer cell lines, but little influence on the normal cell line MCF-10A. Aurovertin B inhibits proliferation of breast cancer cells by inducing apoptosis and arresting cell cycle at the G0/G1 phase. Furthermore, aurovertin B induces the cytotoxic effects in a caspase-dependent manner. This study showed that aurovertin B can be used as an anticancer agent and may be exploited in cancer chemotherapy.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:02:52Z (GMT). No. of bitstreams: 1
ntu-98-D94b43004-1.pdf: 3203553 bytes, checksum: d9c13fbd668dc251f599b178e1b5dfc5 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContents
口試委員會審定書 I
Acknowledgements III
Abstract V
中文摘要 VII
Contents IX
List of Figures XII
List of Tables XIV
Chapter 1 Introduction 1
1.1. Breast cancer 1
1.1.1 Stages of breast cancer 1
1.2 Targeting therapy 5
1.3 Biomarker 6
1.4 Proteomics 6
1.5 Structure bioinformatics 8
1.6 F1FO ATP synthase 9
1.7 ATP synthase inhibitors 10
1.8 Apoptosis 12
1.9 Caspase cascade 14
Chapter 2 Specific Aims 15
Chapter 3 Materials and Methods 16
3.1 Breast cancer specimens and protein extraction 16
3.2 Two dimensional gel electrophoresis (2DE) 16
3.3 In-gel digestion 17
3.4 Protein identification and database searching 18
3.5 Homology modeling 19
3.6 Docking simulation 20
3.7 Western blotting 20
3.8 Cell culture 21
3.9 Flow cytometry 21
3.10 Confocal microscopy 22
3.11 MTT assay 22
3.12 Cell cycle analysis 23
3.13 Annexin V-FITC/PI analysis 23
3.14 DAPI staining 24
3.15 Statistical analysis 24
Chapter 4 Results 25
4.1 Identification of potential targeting proteins 25
4.2 β subunits of ATP synthase localized on the surface of MCF-7 cells 26
4.3 ATP synthase homology modeling and docking simulation 26
4.4 Proliferation inhibition of MCF-7 by F1-targeting ATP synthase inhibitors 28
4.5 Cytotoxicity of aurovertin B to breast cancer cells 28
4.7 Aurovertin B induced apoptosis in human MCF-7 cells 30
4.8 Aurovertin B triggered caspase cascade responsible for apoptosis 31
Chapter 5 Discussion 32
Chapter 6 Conclusion 46
Chapter 7 Future work 47
Reference 49
dc.language.isoen
dc.titleATP合成酶─具潛力之乳癌治療標靶分子zh_TW
dc.titleATP synthase: A potential target for breast cancer therapyen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree博士
dc.contributor.oralexamcommittee張金堅,陳水田,徐駿森,黃宣誠
dc.subject.keyword標靶治療,蛋白質體學分析,ATP合成&#37238,aurovertin B,乳癌,細胞凋亡,細胞週期停止,zh_TW
dc.subject.keywordtargeting therapy,proteomic analysis,ATP synthase,aurovertin B,breast carcinoma,apoptosis,cell cycle arrest,en
dc.relation.page107
dc.rights.note未授權
dc.date.accepted2009-01-23
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
3.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved