Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群(Yi-Chun Wu)
dc.contributor.authorFei-Man Hsuen
dc.contributor.author徐翡曼zh_TW
dc.date.accessioned2021-06-08T07:01:46Z-
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-14
dc.identifier.citationAamodt, E., ed. (2006). The neurobiology of C. elegans (Elsevier Academic Press).
Andachi, Y. (2004). Caenorhabditis elegans T-box genes tbx-9 and tbx-8 are required for formation of hypodermis and body-wall muscle in embryogenesis. Genes Cells 9, 331-344.
Anderson, J.M., and Van Itallie, C.M. (2009). Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1, a002584.
Asano, A., Asano, K., Sasaki, H., Furuse, M., and Tsukita, S. (2003). Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr Biol 13, 1042-1046.
Behr, M., Riedel, D., and Schuh, R. (2003). The claudin-like megatrachea is essential in septate junctions for the epithelial barrier function in Drosophila. Dev Cell 5, 611-620.
Bercher, M., Wahl, J., Vogel, B.E., Lu, C., Hedgecock, E.M., Hall, D.H., and Plenefisch, J.D. (2001). mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes. J Cell Biol 154, 415-426.
Bosher, J.M., Hahn, B.S., Legouis, R., Sookhareea, S., Weimer, R.M., Gansmuller, A., Chisholm, A.D., Rose, A.M., Bessereau, J.L., and Labouesse, M. (2003). The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J Cell Biol 161, 757-768.
Bossinger, O., Fukushige, T., Claeys, M., Borgonie, G., and McGhee, J.D. (2004). The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev Biol 268, 448-456.
Bossinger, O., Klebes, A., Segbert, C., Theres, C., and Knust, E. (2001). Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev Biol 230, 29-42.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 71-94.
Chen, L., Ong, B., and Bennett, V. (2001). LAD-1, the Caenorhabditis elegans L1CAM homologue, participates in embryonic and gonadal morphogenesis and is a substrate for fibroblast growth factor receptor pathway-dependent phosphotyrosine-based signaling. J Cell Biol 154, 841-855.
Chin-Sang, I.D., George, S.E., Ding, M., Moseley, S.L., Lynch, A.S., and Chisholm, A.D. (1999). The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell 99, 781-790.
Chin-Sang, I.D., Moseley, S.L., Ding, M., Harrington, R.J., George, S.E., and Chisholm, A.D. (2002). The divergent C. elegans ephrin EFN-4 functions inembryonic morphogenesis in a pathway independent of the VAB-1 Eph receptor. Development 129, 5499-5510.
Chisholm, A.D., and Hardin, J. (2005). Epidermal morphogenesis. WormBook, 1-22.
Christophe-Hobertus, C., Szpirer, C., Guyon, R., and Christophe, D. (2001). Identification of the gene encoding Brain Cell Membrane Protein 1 (BCMP1), a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22 / Epithelial Membrane Proteins and the Claudins. BMC Genomics 2, 3.
Costa, M., Draper, B.W., and Priess, J.R. (1997). The role of actin filaments in patterning the Caenorhabditis elegans cuticle. Dev Biol 184, 373-384.
Costa, M., Raich, W., Agbunag, C., Leung, B., Hardin, J., and Priess, J.R. (1998). A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol 141, 297-308.
Ding, M., Goncharov, A., Jin, Y., and Chisholm, A.D. (2003). C. elegans ankyrin repeat protein VAB-19 is a component of epidermal attachment structures and is essential for epidermal morphogenesis. Development 130, 5791-5801.
Ding, M., Woo, W.M., and Chisholm, A.D. (2004). The cytoskeleton and epidermal morphogenesis in C. elegans. Exp Cell Res 301, 84-90.
Fay, D. (2006a). Genetic mapping and manipulation: chapter 2--Two-point mapping with genetic markers. WormBook, 1-6.
Fay, D. (2006b). Genetic mapping and manipulation: chapter 3--Three-point mapping with genetic markers. WormBook, 1-7.
Fay, D., and Bender, A. (2008). SNPs: introduction and two-point mapping. WormBook, 1-10.
Firestein, B.L., and Rongo, C. (2001). DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol Biol Cell 12, 3465-3475.
Francis, G.R., and Waterston, R.H. (1985). Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization. J Cell Biol 101, 1532-1549.
Francis, R., and Waterston, R.H. (1991). Muscle cell attachment in Caenorhabditis elegans. J Cell Biol 114, 465-479.
Gendreau, S.B., Moskowitz, I.P., Terns, R.M., and Rothman, J.H. (1994). The potential to differentiate epidermis is unequally distributed in the AB lineage during early embryonic development in C. elegans. Dev Biol 166, 770-781.
George, S.E., Simokat, K., Hardin, J., and Chisholm, A.D. (1998). The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 92, 633-643.
Hapiak, V., Hresko, M.C., Schriefer, L.A., Saiyasisongkhram, K., Bercher, M., and Plenefisch, J. (2003). mua-6, a gene required for tissue integrity in Caenorhabditis elegans, encodes a cytoplasmic intermediate filament. Dev Biol 263, 330-342.
Harrington, R.J., Gutch, M.J., Hengartner, M.O., Tonks, N.K., and Chisholm, A.D. (2002). The C. elegans LAR-like receptor tyrosine phosphatase PTP-3 and the VAB-1 Eph receptor tyrosine kinase have partly redundant functions in morphogenesis. Development 129, 2141-2153.
Heid, P.J., Raich, W.B., Smith, R., Mohler, W.A., Simokat, K., Gendreau, S.B., Rothman, J.H., and Hardin, J. (2001). The zinc finger protein DIE-1 is required for late events during epithelial cell rearrangement in C. elegans. Dev Biol 236, 165-180.
Hong, L., Elbl, T., Ward, J., Franzini-Armstrong, C., Rybicka, K.K., Gatewood, B.K., Baillie, D.L., and Bucher, E.A. (2001). MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis elegans. J Cell Biol 154, 403-414.
Hresko, M.C., Schriefer, L.A., Shrimankar, P., and Waterston, R.H. (1999). Myotactin, a novel hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J Cell Biol 146, 659-672.
Hresko, M.C., Williams, B.D., and Waterston, R.H. (1994). Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. J Cell Biol 124, 491-506.
Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237.
Karabinos, A., Schunemann, J., Meyer, M., Aebi, U., and Weber, K. (2003). The single nuclear lamin of Caenorhabditis elegans forms in vitro stable intermediate filaments and paracrystals with a reduced axial periodicity. J Mol Biol 325, 241-247.
Kiuchi-Saishin, Y., Gotoh, S., Furuse, M., Takasuga, A., Tano, Y., and Tsukita, S. (2002). Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13, 875-886.
Koppen, M., Simske, J.S., Sims, P.A., Firestein, B.L., Hall, D.H., Radice, A.D., Rongo, C., and Hardin, J.D. (2001). Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol 3, 983-991.
Li, W.Y., Huey, C.L., and Yu, A.S. (2004). Expression of claudin-7 and -8 along the mouse nephron. Am J Physiol Renal Physiol 286, F1063-1071.
Lundquist, E.A., Reddien, P.W., Hartwieg, E., Horvitz, H.R., and Bargmann, C.I. (2001). Three C. elegans Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development 128, 4475-4488.
Mango, S.E., Lambie, E.J., and Kimble, J. (1994). The pha-4 gene is required to generate the pharyngeal primordium of Caenorhabditis elegans. Development 120, 3019-3031.
Maurer, C.W., Chiorazzi, M., and Shaham, S. (2007). Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development 134, 1357-1368.
McMahon, L., Legouis, R., Vonesch, J.L., and Labouesse, M. (2001). Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J Cell Sci 114, 2265-2277.
Mello, C.C., Kramer, J.M., Stinchcomb, D., and Ambros, V. (1991). Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10, 3959-3970.
Mohler, W.A., Shemer, G., del Campo, J.J., Valansi, C., Opoku-Serebuoh, E., Scranton, V., Assaf, N., White, J.G., and Podbilewicz, B. (2002). The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev Cell 2, 355-362.
Nelson, K.S., Furuse, M., and Beitel, G.J. (2010). The Drosophila Claudin Kune-kune is required for septate junction organization and tracheal tube size control. Genetics 185, 831-839.
Nguyen, C.Q., Hall, D.H., Yang, Y., and Fitch, D.H. (1999). Morphogenesis of the Caenorhabditis elegans male tail tip. Dev Biol 207, 86-106.
Nievers, M.G., Schaapveld, R.Q., and Sonnenberg, A. (1999). Biology and function of hemidesmosomes. Matrix Biol 18, 5-17.
Paul, S.M., Palladino, M.J., and Beitel, G.J. (2007). A pump-independent function of the Na,K-ATPase is required for epithelial junction function and tracheal tube-size control. Development 134, 147-155.
Paul, S.M., Ternet, M., Salvaterra, P.M., and Beitel, G.J. (2003). The Na+/K+ ATPase is required for septate junction function and epithelial tube-size control in the Drosophila tracheal system. Development 130, 4963-4974.
Pettitt, J., Cox, E.A., Broadbent, I.D., Flett, A., and Hardin, J. (2003). The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. J Cell Biol 162, 15-22.
Pettitt, J., Wood, W.B., and Plasterk, R.H. (1996). cdh-3, a gene encoding a member of the cadherin superfamily, functions in epithelial cell morphogenesis in Caenorhabditis elegans. Development 122, 4149-4157.
Piekny, A.J., Wissmann, A., and Mains, P.E. (2000). Embryonic morphogenesis in Caenorhabditis elegans integrates the activity of LET-502 Rho-binding kinase, MEL-11 myosin phosphatase, DAF-2 insulin receptor and FEM-2 PP2c phosphatase. Genetics 156, 1671-1689.
Pocock, R., Ahringer, J., Mitsch, M., Maxwell, S., and Woollard, A. (2004). A regulatory network of T-box genes and the even-skipped homologue vab-7 controls patterning and morphogenesis in C. elegans. Development 131, 2373-2385.
Podbilewicz, B., Leikina, E., Sapir, A., Valansi, C., Suissa, M., Shemer, G., and Chernomordik, L.V. (2006). The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev Cell 11, 471-481.
Priess, J.R., and Hirsh, D.I. (1986). Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol 117, 156-173.
Raich, W.B., Agbunag, C., and Hardin, J. (1999). Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr Biol 9, 1139-1146.
Reyes, J.L., Lamas, M., Martin, D., del Carmen Namorado, M., Islas, S., Luna, J., Tauc, M., and Gonzalez-Mariscal, L. (2002). The renal segmental distribution of claudins changes with development. Kidney Int 62, 476-487.
Roberts, B., Clucas, C., and Johnstone, I.L. (2003). Loss of SEC-23 in Caenorhabditis elegans causes defects in oogenesis, morphogenesis, and extracellular matrix secretion. Mol Biol Cell 14, 4414-4426.
Roy, P.J., Zheng, H., Warren, C.E., and Culotti, J.G. (2000). mab-20 encodes Semaphorin-2a and is required to prevent ectopic cell contacts during epidermal morphogenesis in Caenorhabditis elegans. Development 127, 755-767.
Sapir, A., Choi, J., Leikina, E., Avinoam, O., Valansi, C., Chernomordik, L.V., Newman, A.P., and Podbilewicz, B. (2007). AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans. Dev Cell 12, 683-698.
Sawa, M., Suetsugu, S., Sugimoto, A., Miki, H., Yamamoto, M., and Takenawa, T. (2003). Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J Cell Sci 116, 1505-1518.
Severson, A.F., Baillie, D.L., and Bowerman, B. (2002). A Formin Homology protein and a profilin are required for cytokinesis and Arp2/3-independent assembly of cortical microfilaments in C. elegans. Curr Biol 12, 2066-2075.
Simske, J.S., and Hardin, J. (2011). Claudin Family Proteins in Caenorhabditis elegans. Methods Mol Biol 762, 147-169.
Simske, J.S., Koppen, M., Sims, P., Hodgkin, J., Yonkof, A., and Hardin, J. (2003). The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans. Nat Cell Biol 5, 619-625.
Soto, M.C., Qadota, H., Kasuya, K., Inoue, M., Tsuboi, D., Mello, C.C., and Kaibuchi, K. (2002). The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes Dev 16, 620-632.
Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100, 64-119.
Van Auken, K., Weaver, D., Robertson, B., Sundaram, M., Saldi, T., Edgar, L., Elling, U., Lee, M., Boese, Q., and Wood, W.B. (2002). Roles of the Homothorax/Meis/Prep homolog UNC-62 and the Exd/Pbx homologs CEH-20 and CEH-40 in C. elegans embryogenesis. Development 129, 5255-5268.
Van Itallie, C.M., and Anderson, J.M. (2004). The role of claudins in determining paracellular charge selectivity. Proc Am Thorac Soc 1, 38-41.
Wang, X., Roy, P.J., Holland, S.J., Zhang, L.W., Culotti, J.G., and Pawson, T. (1999). Multiple ephrins control cell organization in C. elegans using kinase-dependent and -independent functions of the VAB-1 Eph receptor. Mol Cell 4, 903-913.
Williams-Masson, E.M., Malik, A.N., and Hardin, J. (1997). An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development 124, 2889-2901.
Williams, B.D., and Waterston, R.H. (1994). Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J Cell Biol 124, 475-490.
Wissmann, A., Ingles, J., and Mains, P.E. (1999). The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. Dev Biol 209, 111-127.
Wissmann, A., Ingles, J., McGhee, J.D., and Mains, P.E. (1997). Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes Dev 11, 409-422.
Withee, J., Galligan, B., Hawkins, N., and Garriga, G. (2004). Caenorhabditis elegans WASP and Ena/VASP proteins play compensatory roles in morphogenesis and neuronal cell migration. Genetics 167, 1165-1176.
Woo, W.M., Goncharov, A., Jin, Y., and Chisholm, A.D. (2004). Intermediate filaments are required for C. elegans epidermal elongation. Dev Biol 267, 216-229.
Wu, V.M., Schulte, J., Hirschi, A., Tepass, U., and Beitel, G.J. (2004). Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol 164, 313-323.
Zhang, H., Landmann, F., Zahreddine, H., Rodriguez, D., Koch, M., and Labouesse, M. (2011). A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 471, 99-103.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26163-
dc.description.abstract形態發生(morphogenesis)是多細胞生物個體發育出完整外觀樣貌的重要步驟。在線蟲(Caenorhabditis elegans)中,環繞蟲體的表皮組織發育為形態發生的主要環節,如蟲體的尾部即由四個表皮細胞,hyp 8, 9, 10及 11所構成。在線蟲的胚胎發育時期,有一對短暫存活的tail spike cells提供尾部發育的骨架。這對細胞在2-fold之前細胞質會融合為一,延伸出一條細胞突起至蟲體最末端,並被雙核的hyp 10所包覆;在3-fold時期tail spike cells會進行計畫性細胞死亡(programmed cell death),留下細長的細胞突起做為線蟲尾部發育的支架。先前的研究中已發現cdh-3/cadherin及eff-1/fusogen的突變株有尾部末端發育的缺陷(tail tip morphogenesis defect),顯示細胞接合(cell junction)以及細胞融合(cell fusion)有參與線蟲尾部的形態發育。在本篇論文中,我們挑選了兩個尾部形態異常的突變株tp11及tp108進行遺傳性狀分析以及基因定位實驗(genetic mapping)。利用AJM-1::GFP作為細胞邊緣的標記,我們發現tp108的尾部異常主要發生在hyp 8及hyp 11。根據此一性狀進行基因定位實驗的結果顯示tp108為已知基因vab-9的突變株,而VAB-9在先前的研究已被發現作用於細胞接合處(junction protein)。而tp11的尾部異常座落於尾部尖端,主要影響hyp 10的細胞形狀及大小。利用四維顯微鏡技術,我們發現tp11的尾部異常在3-fold時期之前就已發生,顯示此一性狀出現在胚胎發育的早期,而tp11可能是參與線蟲尾部發育的新基因。tp11的基因定位實驗結果顯示其為未知基因K02E10.4的突變株,而我們將繼續研究K02E10.4在線蟲尾部形態發生中所扮演的角色。zh_TW
dc.description.abstractMorphogenesis is an essential process for a multi-cellular organism to develop into its characteristic body shape. In C. elegans, this process is largely controlled by the development of epidermis, a single epithelial layer that surrounds the worm. Four hypodermal cells, hyp 8, 9, 10 and 11 form the posterior tip in the tail. A pair of short-lived tail spike cells provides a scaffold for tail development during embryogenesis. They fuse and extend a single posterior process to the tail tip, over which a binuclear hyp 10 cell is wrapped by at the 2-fold stage. The tail spike cells undergo programmed cell death at the 3-fold stage, leaving behind a narrow spike of microtubule-based structure that is still wrapped by hyp 10. Previous studies showed that cdh-3/cadherin and eff-1/fusogen mutants have an abnormal tail tip, suggesting that cell-cell interaction and cell fusion are important for the formation of this structure. However, not much is known about the morphogenesis of tail tip. Here we report the characterization of two mutants, tp11 and tp108, which were isolated in a screen for mutants with tail defects. We used AJM-1::GFP, a marker for adherens junctions, to study the tail defect of the tp108 allele and found that most hyp 8 and some hyp 11 cells have a bulged shape. tp108 turns out to be a vab-9 allele which encodes a claudin-like junction protein, suggesting that mutation of junction results in tail morphology defect. We used AJM-1::GFP to label the boundaries of tail hypodermal cells, and performed time-course fluorescence and Nomarski microscopy analysis of wild-type and tp11 embryos. The result showed that the abnormality of the tp11 tail predominantly resides in hyp 10. The position and shape of hyp 10 appear normal at the 2-fold stage, but hyp 10 fail to elongate properly during later embryogenesis. tp11 turns out to be a K02E10.4 allele, and further studies of which could shed light on the tail tip morphogenesis in C. elegans.en
dc.description.provenanceMade available in DSpace on 2021-06-08T07:01:46Z (GMT). No. of bitstreams: 1
ntu-100-R98b43009-1.pdf: 25741518 bytes, checksum: 038fe7ba0034bc1bf67a233a7031895c (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents致謝……………………………………………………………………………………1
中文摘要………………………………………………………………………………2
Abstract………………………………………………………………………………..3
Introduction…………………………………………………………………………...5
Epidermal morphogenesis…………………………………………………………5
Cell-cell junctions in C. elegans……………………………………………………9
The tail morphogenesis in C. elegans…………………………………………….12
Materials and Methods………………………………………………………………15
Strains and general methods……………………………………………………...15
Genetic mapping and complementation test……………………………………..15
Genomic DNA rescue………………………………………………………………17
Genomic DNA sequence analysis………………………………………………….17
Plasmid constructions……………………………………………………………...18
Transgenic animals…………………………………………………………………20
Brood size recording………………………………………………………………..20
Microscopy and image analysis……………………………………………………21
Results………………………………………………………………………………….22
tp108 has a tail morphological defect……………………………………………...22
tp108 has several morphological defects…………………………………………..22
tp108 is a vab-9 allele………………………………………………………….........23
VAB-9 is a claudin-like junction protein……………………………………….....24
Pvab-9::4xnls::rfp transcriptional fusion reporter is expressed in the
tail hypodermal cells………………………………………………………………..25
VAB-9 has physical interaction with EAT-6………………………………………26
tp11 has a tail tip morphogenesis defect…………………………………………...26
tp11 male also has a tail defect……………………………………………………..27
tp11 has normal hypodermal cell number in the tail tip…………………………28
tp11 is a K02E10.4 mutant allele…………………………………………………...28
The tail defect in tp11 occurrs before the 3.5-fold stage…………………….……31
The tail spike cell undergoes programmed cell death
normally in tp11…………………………................................................................32
PK02E10.4::gfp transcriptional fusion reporter is expressed in
non-striated muscles………………..………………………………………………32
eff-1/fusogen mutant has tail tip morphogenesis defect………………………….32
ced-3 mutant has normal tail morphology………………………………………..33
Discussion……………………………………………………………………...............32
Claudin family proteins have paracellular ion selectivity………………………..35
vab-9 and tubulogenesis…………………………………………………………….37
Cell fusion of the tail spike cell and hyp 10……………………………………….35
The survival of tail spike cell does not affect tail morphology…………………..38
Put K02E10.4 into the tail morphogenesis model…………………………...........39
References……………………………………………………......................................42
Figure and tables…………………………………………….......................................48
Figure 1. Three-factor mapping protocol……........................................................48
Figure 2. tp108 has tail morphology defect………..................................................49
Figure 3. tp108 has several morphological defects……..........................................50
Figure 4. tp108 has abnormal intestine diameter………………............................51
Figure 5. Genetic map of tp108…………………………….....................................52
Figure 6. VAB-9 alignment………………………………........................................53
Figure 7. The topology of VAB-9……………………..............................................54
Figure 8. Pvab-9::4xnls::rfp transcriptional fusion reporter is expressed
in the tail hypodermal cells…………………….......................................55
Figure 9. VAB-9 has physical interaction with EAT-6………...….........................56
Figure 10. tp11 has tail tip morphogenesis defect…………...................................57
Figure 11. The tail spike cuticle is molted off………………..................................58
Figure 12. Wild-type and tp11 male tail morphology….........................................59
Figure 13. tp11 has embryo morphology defects…………....................................60
Figure 14. The number of hypodermal cell nuclei is normal in tp11…….............61
Figure 15. SNP mapping of tp11………………………...........................................62
Figure 16. Two-point SNP mapping of tp11……………….....................................64
Figure 17. Molecular cloning of tp11……………....................................................65
Figure 18. K02E10.4 protein sequence alignment and analysis…........................66
Figure 19. Wild-type and tp11 tails at different embryonic stages…....................67
Figure 20. The tail spike cell undergoes programmed cell death in tp11..………68
Figure 21. K02E10.4 transcriptional expression pattern……...............................69
Figure 22. eff-1(oj55) has abnormal tail tip……….................................................70
Figure 23. The tail spike cell is located anterior to hyp 10 during
embryogenesis……..................................................................................71
Figure 24. The binuclear tail spike cell is located anterior to hyp 10 in
larva if survived………...........................................................................72
Figure 25. A model of tail tip morphogenesis…......................................................73
Table 1. tp108 mutant phenotype assay…...............................................................74
Table 2. tp108 has precocious 4 alae phenotype……..............................................75
Table 3. Progenies of tp108/unc-52 heterozygote……………...............................76
Table 4. Progenies of tp108/lin-31 bli-2 heterozygote…….....................................77
Table 5. Progenies of tp108 lin-31/dpy-10 unc-53 heterozygote…………………..78
Table 6. Progenies of lin-31 tp108/unc-4 heterozygote……...................................79
Table 7. The tail spike cuticle in tp11 molts with aging………..............................80
Table 8. The brood size of wild-type and tp11…………………….........................81
Table 9. Progenies of tp11/lon-2 heterozygote……………......................................82
Table 10. Progenies of tp11 lon-2/dpy-3 unc-2 heterozygote…...............................83
Table 11. Progenies of tp11 lon-2/ unc-2 heterozygote…........................................84
Supplementary table 1. primer list………..............................................................85
Appendices…………………………………….............................................................86
Appendix 1. Development timing of morphologenetic events…….......................86
Appendix 2. Apical junctional complexes in chordates, Drosophila and
C. elegans…………………………......................................................87
Appendix 3. Phylogeny of Claudin family proteins……........................................88
Appendix 4. Claudin family extracellular loop 1 region…....................................89
Appendix 5. Schematic diagram of a longitinal section of a
newly hatched L1………….................................................................90
Appendix 6. WR1 domain (worm-specific repeat type 1) analysis.......................91
dc.language.isozh-TW
dc.subject線蟲zh_TW
dc.subject形態發生zh_TW
dc.subjectC. elegansen
dc.subjectmorphogenesisen
dc.title研究線蟲尾部的形態發生zh_TW
dc.titleTowards a study of tail morphogenesis in C. elegansen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李士傑(Shyh-Jye Lee),黃偉邦(Wei-Pang Huang)
dc.subject.keyword線蟲,形態發生,zh_TW
dc.subject.keywordC. elegans,morphogenesis,en
dc.relation.page91
dc.rights.note未授權
dc.date.accepted2011-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
25.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved