請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26141完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭振華 | |
| dc.contributor.author | Tsung-Ying Hsieh | en |
| dc.contributor.author | 謝宗穎 | zh_TW |
| dc.date.accessioned | 2021-06-08T07:01:13Z | - |
| dc.date.copyright | 2011-08-17 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-15 | |
| dc.identifier.citation | [1] O. Dangles, C. Magal, D. Pierre, A. Olivier and J. Casas, “Variation in morphology and performance of predator-sensing system in wild cricket populations,” Journal Experimental Biology, vol. 208, pp. 461-8, 2005.
[2] T. Shimozawa, T. Kumagai and Y. Baba, “Structural scaling and functional design of the cercal wind-receptor hair of cricket,” Journal Comparative Physiology, vol. 183, pp. 171-86, 1998 [3] K. Pohlmann, J.Atema, and T. Breithaupt. The importance of the lateral line in nocturnal predation of piscivorous catfish. Journal of Experimental Biology, 2004. [4] C. von Campenhausen, I. Riess, and R. Weissert. Detection of stationary objects by the blind cave fish Anoptichthys jordani (characidae). Journal of Comparative Physiology,1981 [5] V. I. Fernandez, S. M. Hou, F. S. Hover, J. H. Lang, and M. S. Triantafyllou, “Lateral line inspired MEMS-array pressure sensing for passive underwater navigation,” Massachusetts Institute of Technology, 2007 [6] Z. Fan, J. Chen, J. Zou, D. Bullen, C. Liu, and F. Delcomyn, “Design and fabrication of artificial lateral line flow sensors,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 655-661, 2002 [7] J. Chen, Z. Fan, J Zou, J Engel, and C. Liu, “Two-Dimensional Micromachined Flow Sensor Array for Fluid Mechanics Studies,” Journal of Aerospace Engineering, Vol. 16, pp. 85-97, 2003. [8] S. Coombs, R. R. Fay, and John Janssen, “Hot-film anemometry for measuring lateral line stimuli,” J. Acoust. Soc. Am., Vol. 85, No. 5, pp. 2185-2193, 1989. [9] P. M. Morse, Vibration And Sound (2nd ed.), McGRAW-HILL Book Company, 1948. [10] S. Coombs, “Smart Skins: Information Processing by Lateral Line Flow Sensors,” Autonomous Robots, Vol. 11, pp. 255-261, 2001. [11] D. A. Bies, C. H. Hansen, Engineering Noise Control, Unwin Hyman Ltd, 1988 [12] Y. Shen, N. Xi, K. W. C. Lai, W. J. Li, “A novel PVDF micro force/force rate sensor for practical application in micromanipulation,” Sensor Review, vol.24, pp. 274-283, 2006. [13] J. Webb, “Neuromast morphology and lateral line trunk canal ontogeny in two species of cichlids: An SEM study,” Journal of morphology, vol. 202, pp. 53–60, 1989. [14] A. Flock, and J. Wersall, “A study of the orientation of the sensory hairs of the receptor cells in the lateral line organs of fish,” Journal of Cell Biology, vol. 15, pp. 19–27, 1962. [15] T. J. Pitcher, and J. K. Parrish, Behaviour of Teleost Fishes, Chapman and Hall, London, 1993. [16] Z. Chen, Y. Shen, N. Xi, and X. Tan, 'Integrated sensing for ionic polymer–metal composite actuators using PVDF thin films,' Smart Materials and Structures, vol. 16, p. S262, 2007. [17] K. Hosoda, Y. Tada, and M. Asada, “Anthropomorphic robotic soft fingertip with randomly distributed receptors,” Robotics and Autonomous Systems, vol. 54, pp. 104-109, 2006. [18] Measurement Specialties, Inc., Piezo Film Sensors, Technical Manual, Norristown 1999. [19] A. V. Shirinov and W. K. Schomburg, “Pressure sensor from a PVDF film,” Sensors and Actuators A: Physical, vol. 142, pp. 48-55, 2008. [20] J.M. Gere, Mechanics of Materials, Cengage Learning, 2006. [21] K. Hirata, “Development of experimental fish robot,” Proc. 6th Int. Symp. Marine Engineering, pp. 711-714, 2000. [22] E. Skudrzyk, The Foundations of Acoustics : Basic Mathematics and Basic Acoustics, Wien : Springer – Verlag, 1971 [23] K. Hirata, “Development of experimental fish robot,” Proc. 6th Int. Symp. Marine Engineering, pp. 711-714 , 2000. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26141 | - |
| dc.description.abstract | 物競天擇使得生物在演化的過程中,為了能夠延續生命而發產出最佳效率的移動方式以及靈敏的感測系統,魚類身體的兩側佈滿了由神經元所組成的側線系統,能感測流場的變化以及外界壓力的分佈,提供自身充分且足夠的環境資訊,藉此達到躲避天敵以及閃躲障礙物等功能。在本研究中,利用聚偏氟乙烯(PVDF)的壓電特性,量測水下的壓力並轉換為電壓訊號,製作出可使用在仿生型自主式水下載具(BAUV)上的感測元件,並且增強仿生型自主式水下載具對於環境資訊擷取的能力。同時藉由模擬與實驗探討聚偏氟乙烯在不同頻率的外部刺激之下,壓電敏感度的測試結果,找出實驗量測與模擬值誤差最小的特定頻率。提供將來可實際運用在仿生型自主式水下載具上,相應於外部刺激之下設計最佳聚偏氟乙烯尺寸的方法。使仿生型自主式水下載具在聲納與視覺回授系統無法運作時,仍可利用聚偏氟乙烯感測週遭壓力變化、辨識環境特徵,並增加仿生型自主式水下載具前進時的穩定性。 | zh_TW |
| dc.description.abstract | A sensing element composed by a piezoelectric material PVDF with an appropriate electric circuit are presented and its feasibility is shown through a experiment. It was presented how the oscillation pattern of a fish tail beat is similar to the oscillation pattern of an acoustic underwater dipole. Such an artificial acoustic dipole can be simulated experimentally by using a small and rigid vibrating sphere. The behavior of the PVDF film under the presence of a dipole was studied in order to simulate the tail beat of a fish and its effect on a PVDF film for a pressure sensing purpose. In order to do this, the theory of a small oscillating rigid body of arbitrary shape was studied to understand the theory of a vibrating sphere. The latter was also carried out in an experiment. The vibrating sphere was used as the external exciter for a sensitivity test experiment with the PVDF film under different stimulus frequencies to establish a way to choose a PVDF film as a pressure sensor. Finally, selection method for the size of the PVDF film corresponding to the external exciter frequency was presented. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T07:01:13Z (GMT). No. of bitstreams: 1 ntu-100-R96525062-1.pdf: 5234990 bytes, checksum: de51f8449750251d3a228caa5c0f34de (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III ABSTRACT IV CONTENTS V LIST OF FIGURES VII LIST OF TABLES XI List of Symbol XII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature review 2 1.3 Thesis organization 4 Chapter 2 PVDF film as a sensing element 6 2.1 The sensory systems 6 2.2 Details of the lateral line 7 2.3 Principle of PVDF 9 2.4 Dynamic model of PVDF film 13 2.5 Electric circuit for PVDF film 17 2.5.1 Stage I – Charge Amplifier 18 2.5.2 Stage II - Differential Amplifier 19 2.6 Transfer function of PVDF film with electric circuit 20 2.7 Biomimetic Autonomous Underwater Vehicle 23 Chapter 3 Oscillating tail and vibrating sphere 26 3.1 The fish tail as an acoustic dipole 26 3.1.1 Hypothesis and Observation 26 3.1.2 Experimental proof 29 3.2 Pressure of vibrating sphere 32 3.3 The oscillating rigid body as a vibrating sphere 37 3.3.1 The Helmholtz Huygens radiation integral 37 3.3.2 Experimental results 41 Chapter 4 Selection of PVDF film 45 4.1 Vibrations of PVDF film 45 4.2 Oscillating sphere and the PVDF film 50 4.3 Optimal frequency of stimulus for PVDF film 64 Chapter 5 Conclusions 70 REFERENCES 72 | |
| dc.language.iso | en | |
| dc.subject | 偶極聲源 | zh_TW |
| dc.subject | 仿生型水下載具 | zh_TW |
| dc.subject | 聚偏氟乙烯 | zh_TW |
| dc.subject | 側線系統 | zh_TW |
| dc.subject | 避障 | zh_TW |
| dc.subject | obstacle avoidance | en |
| dc.subject | dipole | en |
| dc.subject | lateral line | en |
| dc.subject | PVDF film | en |
| dc.subject | biomimetic underwater vehicles | en |
| dc.title | 仿生型水下載具側線感測元件設計 | zh_TW |
| dc.title | Design of Pressure Sensing Elements for Artificial Lateral Line System of a Biomimetic Underwater Vehicle | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王傑智,李佳翰,鄭逸琳 | |
| dc.subject.keyword | 仿生型水下載具,聚偏氟乙烯,側線系統,偶極聲源,避障, | zh_TW |
| dc.subject.keyword | biomimetic underwater vehicles,PVDF film,lateral line,dipole,obstacle avoidance, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
