Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26085
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王振男(Jenn-Nan Wang)
dc.contributor.authorMei-Chu Hungen
dc.contributor.author洪美珠zh_TW
dc.date.accessioned2021-06-08T06:59:54Z-
dc.date.copyright2009-06-30
dc.date.issued2009
dc.date.submitted2009-06-23
dc.identifier.citation[1a] Edward B. Curtis and James A.Morrow, Chapter 3.1 Conductivities
on Graphs, Inverse Problems for Electrical Networks, Mathematics Department
University of Washing ton, Seattle USA, (2000), 27-29.
[1b] Edward B. Curtis and James A.Morrow, Chapter 3.2 The Response
Mtrix, Inverse Problems for Electrical Networks, Mathematics Department University
of Washing ton, Seattle USA, (2000), 32-33.
[1c] Edward B. Curtis and James A.Morrow, Chapter 3.3 The Kirchho Ma-
trix, Inverse Problems for Electrical Networks, Mathematics Department University
of Washing ton, Seattle USA, (2000), 33-35.
[1d] Edward B. Curtis and James A.Morrow, Chapter 3.4 The Dirichlet
Norm, Inverse Problems for Electrical Networks, Mathematics Department University
of Washing ton, Seattle USA, (2000), 35-38.
[1e] Edward B. Curtis and James A.Morrow, Chapter 3.5 The Schur Com-
plement, Inverse Problems for Electrical Networks, Mathematics Department
University of Washing ton, Seattle USA, (2000), 40-47.
[1f] Edward B. Curtis and James A.Morrow, Chapter 3.6 Sub-matrices of
Response Matrix, Inverse Problems for Electrical Networks, Mathematics Department
University of Washing ton, Seattle USA, (2000), 47-48.
[1g] Edward B. Curtis and James A.Morrow, Chapter 3.7 Connections and
Determinations, Inverse Problems for Electrical Networks, Mathematics Department
University of Washing ton, Seattle USA, (2000), 52-55.
[1h] Edward B. Curtis and James A.Morrow, Chapter 3.8 Recovery of Con-
ductance, Inverse Problems for Electrical Networks, Mathematics Department
University of Washing ton, Seattle USA, (2000), 55-58.
[2a] Edward B. Curtis and James A.Morrow, Chapter 4.1 Harmonic Con-
tinuation, Inverse Problems for Electrical Networks, Mathematics Department
University of Washing ton, Seattle USA, (2000), 59-62.
[2b] Edward B. Curtis and James A.Morrow, Chapter 4.2 Recovering Con-
ductances from , Inverse Problems for Electrical Networks, Mathematics Department
University of Washing ton, Seattle USA, (2000), 62-67.
[2c] Edward B. Curtis and James A.Morrow, Chapter 4.3 Special Functions
on Networks , Chapter 4.4 Special Functions onG4m+3 , Inverse Problems for
Electrical Networks, Mathematics Department University of Washing ton, Seattle
USA, (2000), 67-73.
[2d] Edward B. Curtis and James A.Morrow, Chapter 4.6 The Di eren-
tial of L, Inverse Problems for Electrical Networks, Mathematics Department
University of Washing ton, Seattle USA, (2000), 77-80.
[3] D. Crabtree and E. Haynsworth, An Identity for the Schur complement
of a mtrix, Proc. Amer. Math Soc. 22 (1969) 364-366..
[4] C. L. Dodgson, Condensation of determinants, Proc. Royal Society of
London, vol. 15 (1866) 15-155.
[5] K. JbilouA. Messaoudib and K. Tabaâc, Some Schur complement identi-
ties and applications to matrix extrapolation methods, Laboratoire de Mathematiques
Appliquees, Université du Littoral, Zone Universitaire de la Mi-voix, Batiment
H. Poincarré, 50 rue F. Buisson, BP 699, F-62280 Calais Cedex, France ,
Ecole Normale Supérieure Takaddoum, Département d'Informatique, B.P. 5118,
Av. Oued Akreuch, Takaddoum, Rabat, Morocco, Département de Mathématiques,
Faculté des Sciences de Rabat, Agdal, Rabat, Morocco, (2004) .
[6] Zhang, Fuzhen, The Schur Complement and Its Applications Series: Nu-
merical Methods and Algorithms , Vol. 4 , XVI, 296 p., Hardcover (2005).
[7] Nathaniel D. Blair-Stahn; David B. Wilson , Electrical response matrix
of a regular -gon, Proc. Amer. Math. Soc. 137 (2009), 2015-2025.
[8] Lawrence C. Evans, Partial Di erential Equations, Department of Mathematics
University of California, Berkeley, Vol. 19, (1998), 42-44.
[9] P Hahner, An Inverse Problemin the Electrostatics, Inverse Problem, 15,
(1999), 961-975.
[10] G. Alessandrini, Stable Deteminationof Conductivity by Boundary Mea-
surements, Applicable Anal.,27 (1988), 153-172.
[11] G. Alessandrini, Examples of instability in inverse boundary value prob-
lems, Inverse Problems, 13 (1997), 887 897.
[12] G. Alessandrini, V. Isakov, and J. Powell, Local uniqueness in the inverse
conductivity problem with one measurement, Trans. Amer. Math. Soc., 347
(1995), 3031 3041.
[13] G. Alessandrini, A. Morassi, and E. Rosset, Detecting cavities by elec-
trostatic boundary measurements, Inverse Problem s, 18 (2002), 1333 1353.
[14] H. Ammari and H. Kang, High-order terms in the asymptotic expan-
sions of the steady-state voltage potentials in the presence of conductivity inho-
mogeneities of small diameter, SIAM J. Math. Anal., 34 (2003), 1152 1166.
[15] A. El Badia and T. Ha-Duong, An inverse source problem in potential
analysis, Inverse Problems, 16 (2000), 651 663.
[16] G. Bao, F. Ma, and Y. Chen, An error estimate for recursive lineariza-
tion of the inverse scattering problems, J. Math. Anal. Appl., 247 (2000),
255 271.
[17] E. Beretta, E. Francini, and M.S. Vogelius, Asymptotic formulas for
steady state voltage potentials in the presence of thin inhomogeneities. A rigor-
ous error analysis, J. Math. Pures Appl., 82 (2003), 1277 1301.
[18] M. Br¨uhl, Explicit characterization of inclusions in electrical impedance
tomography, SIAM J. Math. Anal., 32 (2001), 1327 1341.
[19] M. Cheney, D. Isaacson, and J.C. Newell, Electrical impedance tomo-
graphy, SIAM Rev., 41 (1999), 85 101.
[20] D.C. Dobson and F. Santosa, Resolution and stability analysis of an
inverse problem in electrical impedance tomography: dependence of the input
current patterns, SIAM J. Appl. Math., 54 (1994), 1542 1560.
[21] E. Fabes, H. Kang, and J.K. Seo, Inverse conductivity problem with
one measurement: Error estimates and approximate identi cation for perturbed
disks, SIAM J. Math. Anal., 30 (1999), 699 720.
[22] J. Jossinet, E. Marry, and A. Montalibet, Electrical impedance endoto-
mography: imaging tissue from inside, IEEE Trans. Medical Imag., 21 (2002),
560 565.
[23] J. Jossinet, E. Marry, and A. Matias, Electrical impedance endo-tomography,
Phys. Med. Biol., 47 (2002), 2189 2202.
[24] H. Kang, J.K. Seo, and D. Sheen, The inverse conductivity problem with
one measurement: stability and estimation of size, SIAM J. Math. Anal., 28
(1997), 1389 1405.
[25] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Prob-
lems, Applied Mathematical Sciences 120, Springer-Verlag, New York, 1996.
[26] R.V. Kohn and M.S. Vogelius, Determining conductivity by boundary
measurements, Comm. Pure Appl. Math., 37 (1984), 289 298.
[27] J.K. Seo, A uniqueness result on inverse conductivity problem with two
measurements, J. Fourier Anal. Appl., 2 (1996), 227 235.
[28] C.W. Therrien, Discrete Random Signals and Statistical Signal Process-
ing, Englewood Cli s, NJ, Prentice-Hall, 1992.
[29] C.F. Tolmasky and A. Wiegmann, Recovery of small perturbations of an
interface for an elliptic inverse problem via linearization, Inverse Problems, 15
(1999), 465 487.
[30] Developments in inverse problems since Calder´on's foundational paper,
Chapter 19 in Harmonic Analysis and Partial Di erential Equations , 295 345,
edited by M. Christ, C. Kenig, and C. Sadosky, University of Chicago Press,
1999.
[31] T. Yorkey, J. Webster, and W. Tompkins, Comparing reconstruction
algorithms for electrical impedance tomography, IEEE Trans. Biomed. Engr.,
34 (1987), 843 852.
[32] Curtis, E. B., Ingerman, D., Morrow, J. A., Circular planar graphs and
resistor networks. Linear Algebra Appl. 283 (1998), no. 1-3, 115 150
[33] Curtis, E. B., Ingerman, D., Morrow, J. A., Circular planar graphs and
resistor networks. Linear Algebra Appl. 283 (1998), no. 1-3, 115 150.
[34] Borcea, L., Druskin, V. and Vasquez, F. G., Electrical impedance tomog-
raphy with resistor networks, Inverse Problems, 24 (2008), 035013.
[35]Borcea, L., Electrical impedance tomography. Inverse Problems 18 (2002),
no. 6, R99 R136.
[36] Russell Brown, Department of Mathematics University of Kentucky
Lexington, Kentucky,Imaging with electricity: the mathematics of electrical
impedance tomography, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26085-
dc.description.abstract這篇論文主要是針對離散型反問題來作討論,我們會以簡單電路圖來介紹在離散情形對於導電係數和圖形圈數的關係,並進一步利用線性化來探討導電係數的穩定狀況。有別於連續型的反問題處理,我們首先將以對照方式介紹在離散情形的電壓、電流與導電係數的代表函數,在利用電路學上歐姆定律定義出數學上的諧和函數,利用這樣的函數可以幫助我們找到特有的電路圖與導電性的關係,甚至給予線性化方式來討論圖形由內而外的穩定狀態,這是我們這篇論文將要陳述的事與相關證明。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T06:59:54Z (GMT). No. of bitstreams: 1
ntu-98-R96221011-1.pdf: 724301 bytes, checksum: 349fa3ab68b0fa74b621a4a4c87c0e28 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents論文口試委員審定書 i
謝辭 ii
中文摘要 iii
英文摘要 iv
第一章 Introduction
1-1 Continuous Case. 1
1-2 Discrete Case on the Resistor Network 1
第二章 Properties of the Resistor Network
2-1 Response Matrix 4
2-2 Kirchhoff Matrix 5
2-3 Schur Complement 6
2-4 Dirichlet Norm 16
2-5 Sub-matrices of Response Matrix and Connections and Determinations 24
2-6 Recovery of Conductance 30
第三章 Harmonic Functions
3-1 Harmonic Continuation 36.
3-2 Recovering Conductance from Response Matrix 40
3-3 Harmonic Functions 46
3-4 Linearization and Stability 49
參考文獻 76
dc.language.isoen
dc.subject科綺沃夫矩陣zh_TW
dc.subject調和函數zh_TW
dc.subject歐姆定律zh_TW
dc.subject離散型反問題zh_TW
dc.subject電流感應矩陣zh_TW
dc.subjectInverse Problems for resistor networken
dc.subjectKirchhoff matrixen
dc.subjectSchur complementen
dc.subjectresponse matrixen
dc.title離散型電流阻抗掃描zh_TW
dc.titleDiscrete Electrical Impedance Tomographyen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊全(Chun-chuan Chen),林景隆(Ching-Lung Lin)
dc.subject.keyword歐姆定律,電流感應矩陣,科綺沃夫矩陣,離散型反問題,調和函數,zh_TW
dc.subject.keywordInverse Problems for resistor network,response matrix,Kirchhoff matrix,Schur complement,,en
dc.relation.page78
dc.rights.note未授權
dc.date.accepted2009-06-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
707.33 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved