Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26074Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉(Ming-Jai, Su) | |
| dc.contributor.author | Shih-Yi Lee | en |
| dc.contributor.author | 李士毅 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:59:40Z | - |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-22 | |
| dc.identifier.citation | 1. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357:1121-1135
2. Reeve JL, Duffy AM, O'Brien T, et al. Don't lose heart--therapeutic value of apoptosis prevention in the treatment of cardiovascular disease. J Cell Mol Med 2005; 9:609-622 3. Monassier JP. Reperfusion injury in acute myocardial infarction. From bench to cath lab. Part I: Basic considerations. Arch Cardiovasc Dis 2008; 101:491-500 4. Jennings RB, Sommers HM, Smyth GA, et al. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol 1960; 70:68-78 5. Cerra FB, Lajos TZ, Montes M, et al. Hemorrhagic infarction: A reperfusion injury following prolonged myocardial ischemic anoxia. Surgery 1975; 78:95-104 6. Hearse DJ, Humphrey SM, Bullock GR. The oxygen paradox and the calcium paradox: two facets of the same problem? J Mol Cell Cardiol 1978; 10:641-668 7. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edged sword? J Clin Invest 1985; 76:1713-1719 8. PaperModel, Liu YB, Yu B, et al. Mechanisms mediating the cardioprotective effects of rapamycin in ischaemia-reperfusion injury. Clin Exp Pharmacol Physiol 2011; 38:77-83 9. Prasad A, Stone GW, Holmes DR, et al. Reperfusion injury, microvascular dysfunction, and cardioprotection: the 'dark side' of reperfusion. Circulation 2009; 120:2105-2112 10. Yellon DM, Baxter GF. Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med 1999; 9:245-249 11. Cross TG, Scheel-Toellner D, Henriquez NV, et al. Serine/threonine protein kinases and apoptosis. Exp Cell Res 2000; 256:34-41 12. RISK1st, Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004; 61:448-460 13. Russell RR, 3rd, Li J, Coven DL, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 2004; 114:495-503 14. Hausenloy DJ, Tsang A, Mocanu MM, et al. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol Heart Circ Physiol 2005; 288:H971-976 15. Review, Kim AS, Miller EJ, et al. AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf) 2009; 196:37-53 16. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 2005; 14:170-175 17. Solaini G, Harris DA. Biochemical dysfunction in heart mitochondria exposed to ischaemia and reperfusion. Biochem J 2005; 390:377-394 18. Dobson GP, Himmelreich U. Heart design: free ADP scales with absolute mitochondrial and myofibrillar volumes from mouse to human. Biochim Biophys Acta 2002; 1553:261-267 19. Powers SK, Murlasits Z, et al. Ischemia-reperfusion-induced cardiac injury: a brief review. Med Sci Sports Exerc 2007; 39:1529-1536 20. Palmer JW, Tandler B, et al. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem 1977; 252:8731-8739 21. Maechler P, Wollheim CB. Mitochondrial function in normal and diabetic beta-cells. Nature 2001; 414:807-812 22. O'Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 2004; 94:420-432 23. Hess ML, Manson NH. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury. J Mol Cell Cardiol 1984; 16:969-985 24. Prat AG, Turrens JF. Ascorbate- and hemoglobin-dependent brain chemiluminescence. Free Radic Biol Med 1990; 8:319-325 25. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 2004; 61:461-470 26. Downey JM. Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol 1990; 52:487-504 27. Zhao ZQ, Velez DA, Wang NP, et al. Progressively developed myocardial apoptotic cell death during late phase of reperfusion. Apoptosis 2001; 6:279-290 28. Kemp BE, Stapleton D, Campbell DJ, et al. AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 2003; 31:162-168 29. Yeh CH, Chen TP, Wang YC, et al. AMP-activated protein kinase activation during cardioplegia-induced hypoxia/reoxygenation injury attenuates cardiomyocytic apoptosis via reduction of endoplasmic reticulum stress. Mediators Inflamm 2010; 2010:130636 30. Calvert JW, Gundewar S, Jha S, et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008; 57:696-705 31. Das AM, Harris DA. Regulation of the mitochondrial ATP synthase in intact rat cardiomyocytes. Biochem J 1990; 266:355-361 32. PerfusateLactate, Khandoudi N, Delerive P, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma, inhibits the Jun NH(2)-terminal kinase/activating protein 1 pathway and protects the heart from ischemia/reperfusion injury. Diabetes 2002; 51:1507-1514 33. Ambrosio G, Zweier JL, Duilio C, et al. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. J Biol Chem 1993; 268:18532-18541 34. Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res 1998; 38:291-300 35. Buja LM, Weerasinghe P. Unresolved issues in myocardial reperfusion injury. Cardiovasc Pathol 2010; 19:29-35 36. Li C, Jackson RM. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 2002; 282:C227-241 37. Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res 2006; 70:181-190 38. Sheu SS, Wang W, Cheng H, et al. Superoxide flashes: illuminating new insights into cardiac ischemia/reperfusion injury. Future Cardiol 2008; 4:551-554 39. Wang W, Fang H, Groom L, et al. Superoxide flashes in single mitochondria. Cell 2008; 134:279-290 40. Monassier JP. Reperfusion injury in acute myocardial infarction: from bench to cath lab. Part II: Clinical issues and therapeutic options. Arch Cardiovasc Dis 2008; 101:565-575 41. Zimmet JM, Hare JM. Nitroso-redox interactions in the cardiovascular system. Circulation 2006; 114:1531-1544 42. Piper HM, Kasseckert S, Abdallah Y. The sarcoplasmic reticulum as the primary target of reperfusion protection. Cardiovasc Res 2006; 70:170-173 43. Hausenloy DJ, Yellon DM. The mitochondrial permeability transition pore: its fundamental role in mediating cell death during ischaemia and reperfusion. J Mol Cell Cardiol 2003; 35:339-341 44. Hausenloy DJ, Duchen MR, Yellon DM. Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 2003; 60:617-625 45. Di Lisa F, Menabo R, Canton M, et al. Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 2001; 276:2571-2575 46. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 1995; 307 ( Pt 1):93-98 47. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 1979; 195:468-477 48. Piper HM, Garcia-Dorado D. Prime causes of rapid cardiomyocyte death during reperfusion. Ann Thorac Surg 1999; 68:1913-1919 49. Murphy E, Cross H, Steenbergen C. Sodium regulation during ischemia versus reperfusion and its role in injury. Circ Res 1999; 84:1469-1470 50. Imahashi K, Kusuoka H, Hashimoto K, et al. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 1999; 84:1401-1406 51. Maddaford TG, Pierce GN. Myocardial dysfunction is associated with activation of Na+/H+ exchange immediately during reperfusion. Am J Physiol 1997; 273:H2232-2239 52. Akhlaghi M, Bandy B. Mechanisms of flavonoid protection against myocardial ischemia-reperfusion injury. J Mol Cell Cardiol 2009; 46:309-317 53. Chen JX, Zeng H, Tuo QH, et al. NADPH oxidase modulates myocardial Akt, ERK1/2 activation, and angiogenesis after hypoxia-reoxygenation. Am J Physiol Heart Circ Physiol 2007; 292:H1664-1674 54. Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 2006; 70:191-199 55. Hunter DR, Haworth RA. The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 1979; 195:453-459 56. Kroemer G, Petit P, Zamzami N, et al. The biochemistry of programmed cell death. FASEB J 1995; 9:1277-1287 57. Loeffler M, Kroemer G. The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 2000; 256:19-26 58. Gibson CM. Time is myocardium and time is outcomes. Circulation 2001; 104:2632-2634 59. Schomig A, Ndrepepa G, Mehilli J, et al. Therapy-dependent influence of time-to-treatment interval on myocardial salvage in patients with acute myocardial infarction treated with coronary artery stenting or thrombolysis. Circulation 2003; 108:1084-1088 60. Longnus SL, Segalen C, et al. Insulin signalling downstream of protein kinase B is potentiated by 5'AMP-activated protein kinase in rat hearts in vivo. Diabetologia 2005; 48:2591-2601 61. Shmist YA, Kamburg R, Ophir G, et al. N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine improves myocardial protection against ischemia by modulation of intracellular Ca2+ homeostasis. J Pharmacol Exp Ther 2005; 313:1046-1057 62. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004; 61:448-460 63. Rice-Evans C. Flavonoid antioxidants. Curr Med Chem 2001; 8:797-807 64. Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 2002; 22:19-34 65. Hunton DL, Lucchesi PA, Pang Y, et al. Capacitative calcium entry contributes to nuclear factor of activated T-cells nuclear translocation and hypertrophy in cardiomyocytes. J Biol Chem 2002; 277:14266-14273 66. Samarel AM, Engelmann GL. Contractile activity modulates myosin heavy chain-beta expression in neonatal rat heart cells. Am J Physiol 1991; 261:H1067-1077 67. Sabri A, Byron KL, Samarel AM, et al. Hydrogen peroxide activates mitogen-activated protein kinases and Na+-H+ exchange in neonatal rat cardiac myocytes. Circ Res 1998; 82:1053-1062 68. Wu LX, Gu XF, Zhu YC, et al. Protective effects of novel single compound, Hirsutine on hypoxic neonatal rat cardiomyocytes. Eur J Pharmacol 2011; 650:290-297 69. Zhu YZ, Wang ZJ, Ho P, et al. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol 2007; 102:261-268 70. Liu XH, Xin H, Hou AJ, et al. Protective effects of leonurine in neonatal rat hypoxic cardiomyocytes and rat infarcted heart. Clin Exp Pharmacol Physiol 2009; 36:696-703 71. Rucker-Martin C, Henaff M, Hatem SN, et al. Early redistribution of plasma membrane phosphatidylserine during apoptosis of adult rat ventricular myocytes in vitro. Basic Res Cardiol 1999; 94:171-179 72. Vermes I, Haanen C, Steffens-Nakken H, et al. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184:39-51 73. Bertrand R, Solary E, O'Connor P, et al. Induction of a common pathway of apoptosis by staurosporine. Exp Cell Res 1994; 211:314-321 74. Kravchuk E, Grineva E, Bairamov A, et al. The Effect of Metformin on the Myocardial Tolerance to Ischemia-Reperfusion Injury in the Rat Model of Diabetes Mellitus Type II. Exp Diabetes Res 2011; 2011:907496 75. Yin M, van der Horst IC, van Melle JP, et al. Metformin improves cardiac function in a non-diabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol 2011 76. Wang XF, Zhang JY, Li L, et al. Metformin improves cardiac function in rats via activation of AMP-activated protein kinase. Clin Exp Pharmacol Physiol 2011; 38:94-101 77. Solskov L, Lofgren B, Kristiansen SB, et al. Metformin induces cardioprotection against ischaemia/reperfusion injury in the rat heart 24 hours after administration. Basic Clin Pharmacol Toxicol 2008; 103:82-87 78. Bhamra GS, Hausenloy DJ, Davidson SM, et al. Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol 2008; 103:274-284 79. Legtenberg RJ, Houston RJ, Oeseburg B, et al. Metformin improves cardiac functional recovery after ischemia in rats. Horm Metab Res 2002; 34:182-185 80. Paiva MA, Goncalves LM, Providencia LA, et al. Transitory activation of AMPK at reperfusion protects the ischaemic-reperfused rat myocardium against infarction. Cardiovasc Drugs Ther 2010; 24:25-32 81. Bonow RO, Mann DL, Zipes DP, et al., eds. Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine 82. Itoh G, Tamura J, et al. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 1995; 146:1325-1331 83. Malhotra R, Brosius FC, 3rd. Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 1999; 274:12567-12575 84. Zhao ZQ, Morris CD, Budde JM, et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res 2003; 59:132-142 85. Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998; 67:821-855 86. Yeh LA, Lee KH, et al. Regulation of rat liver acetyl-CoA carboxylase. Regulation of phosphorylation and inactivation of acetyl-CoA carboxylase by the adenylate energy charge. J Biol Chem 1980; 255:2308-2314 87. Hardie DG. Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett 2008; 582:81-89 88. Marsin AS, Bertrand L, Rider MH, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr Biol 2000; 10:1247-1255 89. Ojuka EO, Nolte LA, Holloszy JO. Increased expression of GLUT-4 and hexokinase in rat epitrochlearis muscles exposed to AICAR in vitro. J Appl Physiol 2000; 88:1072-1075 90. Russell RR, 3rd, Bergeron R, Shulman GI, et al. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am J Physiol 1999; 277:H643-649 91. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, et al. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 1999; 48:1667-1671 92. Gene, Zheng D, MacLean PS, et al. Regulation of muscle GLUT-4 transcription by AMP-activated protein kinase. J Appl Physiol 2001; 91:1073-1083 93. Daval M, Foufelle F, Ferre P. Functions of AMP-activated protein kinase in adipose tissue. J Physiol 2006; 574:55-62 94. Kudo N, Barr AJ, Barr RL, et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J Biol Chem 1995; 270:17513-17520 95. Kemp BE, Mitchelhill KI, Stapleton D, et al. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 1999; 24:22-25 96. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996; 28:2005-2016 97. Saraste A, Voipio-Pulkki LM, Parvinen M, et al. Apoptosis in the heart. N Engl J Med 1997; 336:1025-1026; author reply 1026 98. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation 1997; 95:320-323 99. Puthalakath H, Strasser A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 2002; 9:505-512 100. Bouillet P, Purton JF, Godfrey DI, et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 2002; 415:922-926 101. Zha J, Harada H, Yang E, et al. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996; 87:619-628 102. Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 1995; 80:285-291 103. Yamaguchi H, Wang HG. The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 2001; 20:7779-7786 104. Tsuruta F, Masuyama N, Gotoh Y. The phosphatidylinositol 3-kinase (PI3K)-Akt pathway suppresses Bax translocation to mitochondria. J Biol Chem 2002; 277:14040-14047 105. Mayo LD, Donner DB. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 2001; 98:11598-11603 106. Weston CR, Balmanno K, Chalmers C, et al. Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently of the JNK or PI3K pathways. Oncogene 2003; 22:1281-1293 107. Bellacosa A, Testa JR, Staal SP, et al. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 1991; 254:274-277 108. Jones PF, Jakubowicz T, Pitossi FJ, et al. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci U S A 1991; 88:4171-4175 109. Myklebust JH, Josefsen D, Blomhoff HF, et al. Activation of the cAMP signaling pathway increases apoptosis in human B-precursor cells and is associated with downregulation of Mcl-1. J. Cell. Physiol. 1999; 180: 71–80 110. Marte BM, Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997; 22:355-358 111. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91:231-241 112. Harada H, Andersen JS, Mann M, et al. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 2001; 98:9666-9670 113. Tan Y, Ruan H, Demeter MR, et al. p90(RSK) blocks bad-mediated cell death via a protein kinase C-dependent pathway. J Biol Chem 1999; 274:34859-34867 114. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282:1318-1321 115. Balakirev M, Khramtsov VV, Zimmer G. Modulation of the mitochondrial permeability transition by nitric oxide. Eur J Biochem 1997; 246:710-718 116. Romashkova JA, Makarov SS. NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 1999; 401:86-90 117. Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96:857-868 118. Xia Z, Dickens M, Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270:1326-1331 119. Le Gall M, Chambard JC, Breittmayer JP, et al. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell 2000; 11:1103-1112 120. Cagnol S, Mansour A, Van Obberghen-Schilling E, et al. Raf-1 activation prevents caspase 9 processing downstream of apoptosome formation. J Signal Transduct 2011; 2011:834948 121. Erhardt P, Schremser EJ, Cooper GM. B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol 1999; 19:5308-5315 122. Bonni A, Brunet A, West AE, et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999; 286:1358-1362 123. Lips DJ, Bueno OF, Wilkins BJ, et al. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 2004; 109:1938-1941 124. Ley R, Balmanno K, Hadfield K, et al. Activation of the ERK1/2 signaling pathway promotes phosphorylation and proteasome-dependent degradation of the BH3-only protein, Bim. J Biol Chem 2003; 278:18811-18816 125. Luciano F, Jacquel A, Colosetti P, et al. Phosphorylation of Bim-EL by Erk1/2 on serine 69 promotes its degradation via the proteasome pathway and regulates its proapoptotic function. Oncogene 2003; 22:6785-6793 126. Breitschopf K, Haendeler J, Malchow P, et al. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 2000; 20:1886-1896 127. Boucher MJ, Morisset J, Vachon PH, et al. MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 2000; 79:355-369 128. Fremin C, Meloche S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 2010; 3:8 129. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108:1167-1174 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26074 | - |
| dc.description.abstract | 背景: 降低心肌梗塞的受損範圍,是決定臨床治療結果的重要因子。因此,許多研究已朝向探索心肌缺血及再灌流傷害的分子機轉,並且尋找可減少心肌缺血及再灌流損傷的藥物。Metformin 是治療糖尿病的常用藥物。其治療糖尿病的作用機轉,是透過誘發AMPK磷酸化, 而達到調整醣類、脂質、蛋白質的代謝。 由於metformin能活化AMPK,已有研究指出metformin 具有減少心肌缺血再灌流所造成的損傷的保護能力。本實驗目的為評估一合成藥物NTU-1150是否對心肌缺血再灌流所造成的損傷具有保護作用,並探討其可能的機轉,並與metformin之作用相比較。
實驗方法:心肌細胞取自第二天或第三天新生大鼠心臟。將心室心肌細胞培養於攝氏37度,5% CO2,20% O2的培養箱中。待取下的心肌細胞固定及穩定後,才進行以下的實驗。將細胞依加入不同的試劑,予以分組。各組細胞在20% O2的培養箱12小時後,移至氮氣充填之密閉低氧艙中6小時,再放回培養箱中12小時。使用 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium (MTT) 進行細胞活性測試,並利用西方墨點法,進行蛋白質表現分析。 實驗結果:NTU-1150 1 μM及metformin 30 μM對缺氧再灌流之新生大鼠心肌細胞的存活率有相似之增加效果。同時, NTU-1150及metformin也提高了pAMPK,pAKT, pERK, GLUT4 及pmTOR的表現量,也明顯降低caspase 3的活性。使用AMPK inhibitor (Compound C) 會減少pAMPK 及GLUT4的表現量,並且會增加caspase 3活性 及減少細胞存活率。而AKT inhibitor (LY294002) 則會降低pAMPK, pAKT, pERK, GLUT4的表現量,並提高caspase 3的活性及減少細胞存活率。 結論: NTU-11501 μM及metformin 30 μM對缺血再灌流新生大鼠心肌細胞存活率有相似之增強作用。而兩種化合物對AMPK及AKT磷酸化之增強作用可能與其促進GLUT4表現,及細胞存活率增加有關。 | zh_TW |
| dc.description.abstract | Background: Myocardial infarction is a major cardiovascular disease. Restoration of blood flow has become an established strategy for treatment of acute myocardial infarction. Restoration of blood flow to the ischemic myocardium can result in the ischemia-reperfusion injury. The pathogenic mechanisms of ischemia/reperfusion (I/R) injury include generation of ROS and the inflammatory response. Therapy to reduce reperfusion injury has become an important topic. In this study, we aimed to evaluate the cardioprotective efficacy of NTU-1150, a synthetic compound of caffeic acid amide derivative, on neonatal rat ventricular myocytes (NRVMs) in hypoxia/reoxygenation (H/R) condition. Metformin, a diabetic agent known to have cardioprotective in I/R rat myocardium, was also investigated and compared with the actions of NTU-1150.
Material and Methods: NRVMs were obtained and studied with a designed H/R protocol. The NRVMs viability in H/R condition accompanied with the presence of vehicle, NTU-1150, or metformin, were checked by 3-(4,5-dimethylthiazol-2-yl) diphenyltetrazolium (MTT) assay. The corresponding protein expressions were analyzed by western blot. The molecular mechanisms related to the protective effects of NTU-1150 and metofrmin on NRVMs viability in H/R condition were tested with or without the presence of LY294002 (AKT inhibitor), or Compound C (AMPK inhibitor). Results: Both NTU-1150 at concentrations from 0.1 to 3 μM and metformin at 30 μM increased cell viability of NRVMs in H/R condition. This protective effect of both agents was associated with an increase in phosphorylation of AMPK, AKT, mTOR, ERK and expression of GLUT4. This protective effect by 1 μM NTU-1150 was comparable to that by 30 μM metformin. The protective effect of both agents was accompanied by a decrease of caspase 3 activity. Addition of LY294002 (15 μM) inhibited both NTU-1150 and metformin-stimulated AKT phosphorylation. The inhibition of AKT phosphorylation resulted in an inhibition of ERK and mTOR phosphorylation. On the other hand, the addition of compound C resulted in an inhibition of both NTU-1150 and metformin-induced AMPK phosphorylation. Compared to the inhibition of AKT phosphorylation by LY-294002, the inhibition of AMPK phosphorylation was not associated with any change of ERK activity but resulted in a more prominent inhibition of GLUT4 expression and cell viability. Conclusion: In this study, NTU-1150 1 μM and metformin 30 μM exerted similar protective effect on viability of NRVMs in H/R condition. Both the stimulation of AMPK phosphorylation and AKT phosphorylation contribute to the increase of GLUT4 expression and cell viability induced by NTU-1150 and metformin. Activation of AMPK contributes more to the cardioprotective activity of both agents. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:59:40Z (GMT). No. of bitstreams: 1 ntu-100-R98441011-1.pdf: 2012343 bytes, checksum: 5235dfc232f58068826dc0038b08f665 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Abbreviations.………………………………………iii
Abstract in Chinese.………………………………iv Abstract………………………………………………vi Chapter 1. Introduction.…………………………1 - reperfusion injury………………………………1 - normal cardiomyocyte metabolism………………2 - cardiomyocyte necrosis and apoptosis during acute myocardial infarction…………………………………2 - pathophysiology of cardiomyocyte necrosis during ischemic injury in acute myocardial infarction…………3 - pathophysiology of cardiomyocyte necrosis and apoptosis during reperfusion injury in acute myocardial infarction…5 - agents discovered to prevent heart from ischemia-reperfusion injury…7 - study purpose…………………………………………7 Chapter 2. Material and Methods…………………………………………………8 - material………………………………………………………8 - experimental approach……………………………9 - neonatal rat ventricle myocyte primary culture……9 - cell viability………………………………………………9 - apoptosis and necrosis detection………………………10 - experimental protocol……………………………………10 - western blot analysis……………………………………12 - statistical analysis……………………………………12 Chapter 3. Results…………………………………………13 - effects of various reagents on viability of neonatal rat cardiomyocytes in normal or serum deprived condition…… 13 - effects of NTU-1150 on AMPK and AKT phosphorylation of neonatal rat cardiomyocytes in serum starvation…………… 14 - comparison of the protective activity of metformin and NTU-1150 on neonatal rat cardiomyocytes……………………………………………………… 15 - concentration effects of NTU-1150 and metformin on phosphorylation of AMPK, AKT, mTOR, and on the expression of GLUT4 in NRVMs in H/R condition……………………………………………………………16 - comparison of the contribution of the AMPK and AKT pathways in protective effects of NTU-1150 and metformin on neonatal rat cardiomyocytes in H/R condition……………………………………………………………17 - effects of AMPK and AKT inhibitor on phosphorylation of AMPK, AKT, mTOR, and on the expression of GLUT4 in H/R condition with DMSO, or H2O, or NTU-1150, or metformin……………………………………………………………18 Chapter 4. Discussion……………………………………………35 - NTU-1150 and metformin increase NRVM viability in H/R condition ……………………………………………………………35 - NTU-1150 and metformin protect NRVMs from H/R condition possibly through AMPK and AKT phosphorylation……………36 - NRVM viability and protein expressions in H/R condition are influenced by NTU-1150, metformin, LY294002 and Compound C ……………………………………………………………40 Chapter 5. Conclusions……………………………………………41 References……………………………………………………………42 | |
| dc.language.iso | en | |
| dc.subject | 心肌缺血再灌流損傷 | zh_TW |
| dc.subject | AMPK | zh_TW |
| dc.subject | AKT | zh_TW |
| dc.subject | metformin | zh_TW |
| dc.subject | RISK途徑 | zh_TW |
| dc.subject | AMPK | en |
| dc.subject | metformin | en |
| dc.subject | AKT | en |
| dc.subject | myocardial ischemia reperfusion injury | en |
| dc.subject | RISK pathway | en |
| dc.title | Metformin 及 NTU1150 對新生大鼠心肌細胞的保護作用 | zh_TW |
| dc.title | The Protective Effects of the Metformin and NTU1150 on Neonatal Rat Ventricular Myocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王淑美,顏茂雄,陳文彬 | |
| dc.subject.keyword | 心肌缺血再灌流損傷,AMPK,AKT,metformin,RISK途徑, | zh_TW |
| dc.subject.keyword | myocardial ischemia reperfusion injury,AMPK,AKT,metformin,RISK pathway, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| Appears in Collections: | 生理學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 1.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
