請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26066
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李秋坤(Tsiu-Kwen Lee) | |
dc.contributor.author | Chin-Chun Yang | en |
dc.contributor.author | 楊清鈞 | zh_TW |
dc.date.accessioned | 2021-06-08T06:59:30Z | - |
dc.date.copyright | 2009-07-14 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-06-27 | |
dc.identifier.citation | [1] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, “Rings with Generalized
Identities”, Monographs and Textbooks in Pure and Applied Mathematics, 196. Marcel Dekker, Inc., New York, 1996. [2] H.E. Bell, Higher derivatives and finiteness in rings, Math. J. Okayama Univ. 41 (1999), 21-25 [3] H.E. Bell and W.S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30(1) (1987), 92–101. [4] M. Breˇsar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33(1) (1991), 89-93. [5] C.-L. Chuang and T.-K. Lee, Nilpotent derivations, J. Algebra 287 (2005), 384–401 [6] C. Faith and Y. Utumi, A new proof of Litoff’s theorem, Acta Math. Acad. Sci. Hung. 14 (1963), 369–371 [7] I.N. Herstein, “Topic in ring theory”, University of Chicago Press, Chicago, (1969). [8] T.-K. Lee, Semiprime Rings with Differential Identities, Bull. Inst. Math. Acad. Sinica, 20 (1) (1992), 27–38. [9] T.-K. Lee, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc. 347 (1995), 3159–3165. [10] T.-K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloq. 3(1) (1996), 19–24. [11] T.-K. Lee, Differential identities of Lie ideals or large right ideals in prime rings, Comm. Algebra 27(2) (1999), 793–810. [12] T.-K. Lee, Prime rings with finiteness properties on one-sided ideals, Proc. Edinb. Math. Soc. 45(2) (2002), 507–511. [13] T.-K. Lee, Finiteness properties of differential polynomials, Linear Algebra Appl. 430(8/9) (2009), 2030–2041. [14] T.-K. Lee and T.-L. Wong, Semiprime algebras with finiteness conditions, Comm. Algebra, 31(4) (2003), 1823–1835. [15] T.-K. Lee and T.-L. Wong, Linear generalized polynomials with finiteness conditions., Comm. Algebra 32(12) (2004), 4535–4542. [16] T.-K. Lee and W.-K. Shiue, Linear identities and derivations, Comm. Algebra 28(7) (2000), 3317–3327. [17] W.S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584 [18] W.S. Martindale, III and C.R. Miers, On the iterates of derivations of prime rings, Pacific J. Math. 104 (1983), 179–190. [19] L.H. Rowen, “Polynomial Identities in Ring Theory”, Academic Press, New York, 1980. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26066 | - |
dc.description.abstract | 令 R 是一個質環, R 的擴張質心為 C,右馬汀達爾商環為 Q。假設 G 是 R的一個泛導函數以及 n 是一個正整數。在這篇論文中,我們研究當由 Gn(I),Gn(L), S 和 G(ρ) 生成之 C-向量子空間是有限維度時的性質,其中 I 是 R 的一個非零理想, L 是R的非交換算子李理想,ρ是 R 的一個非零右零想以及 S 定義成 S = {[x,δ(x)] | x ∈ρ}。 另外,有限性質也有被研究到。 | zh_TW |
dc.description.abstract | Let R be a prime ring with extended centroid C and with right Martindale quotient ring Q. Suppose that G is a nonzero generalized derivation of R and n is a positive integer. In the thesis we investigate the finite-dimensionality for C-subspaces spanned by Gn(I), Gn(L), S and G(ρ), where I is a nonzero ideal of R, L a noncentral Lie ideal of R, ρ a nonzero right ideal of R and S := { [x,δ(x)] | x ∈ ρ}. The finiteness properties are also investigated. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:59:30Z (GMT). No. of bitstreams: 1 ntu-98-R96221024-1.pdf: 406886 bytes, checksum: 07d0b9fba572abe6e8e0acbe4a961695 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………… I
Acknowledgement …………………………………………………… II 摘要 ………………………………………………………………… III Abstract ………………………………………………………………IV Contents ……………………………………………………………… V 1 Results………………………………………………………………1 2 Proofs……………………………………………………………… 3 Reference …………………………………………………………… 15 | |
dc.language.iso | en | |
dc.title | 質環上高階泛導之有限性性質 | zh_TW |
dc.title | Finiteness properties of higher generalized derivations in prime rings. | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李白飛(Pjek-Hwee Lee),劉承楷 | |
dc.subject.keyword | 質環,(泛)導函數,李理想,多項式恆等式,廣多項式恆等式, | zh_TW |
dc.subject.keyword | Prime ring,(generalized) derivation,Lie ideal,PI,GPI., | en |
dc.relation.page | 16 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2009-06-29 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 數學研究所 | zh_TW |
顯示於系所單位: | 數學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 397.35 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。