Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26066
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李秋坤(Tsiu-Kwen Lee)
dc.contributor.authorChin-Chun Yangen
dc.contributor.author楊清鈞zh_TW
dc.date.accessioned2021-06-08T06:59:30Z-
dc.date.copyright2009-07-14
dc.date.issued2009
dc.date.submitted2009-06-27
dc.identifier.citation[1] K.I. Beidar, W.S. Martindale 3rd and A.V. Mikhalev, “Rings with Generalized
Identities”, Monographs and Textbooks in Pure and Applied Mathematics, 196.
Marcel Dekker, Inc., New York, 1996.
[2] H.E. Bell, Higher derivatives and finiteness in rings, Math. J. Okayama Univ. 41
(1999), 21-25
[3] H.E. Bell and W.S. Martindale, III, Centralizing mappings of semiprime rings,
Canad. Math. Bull. 30(1) (1987), 92–101.
[4] M. Breˇsar, On the distance of the composition of two derivations to the generalized
derivations, Glasgow Math. J. 33(1) (1991), 89-93.
[5] C.-L. Chuang and T.-K. Lee, Nilpotent derivations, J. Algebra 287 (2005), 384–401
[6] C. Faith and Y. Utumi, A new proof of Litoff’s theorem, Acta Math. Acad. Sci.
Hung. 14 (1963), 369–371
[7] I.N. Herstein, “Topic in ring theory”, University of Chicago Press, Chicago, (1969).
[8] T.-K. Lee, Semiprime Rings with Differential Identities, Bull. Inst. Math. Acad.
Sinica, 20 (1) (1992), 27–38.
[9] T.-K. Lee, Left annihilators characterized by GPIs, Trans. Amer. Math. Soc. 347
(1995), 3159–3165.
[10] T.-K. Lee, Power reduction property for generalized identities of one-sided ideals,
Algebra Colloq. 3(1) (1996), 19–24.
[11] T.-K. Lee, Differential identities of Lie ideals or large right ideals in prime rings,
Comm. Algebra 27(2) (1999), 793–810.
[12] T.-K. Lee, Prime rings with finiteness properties on one-sided ideals, Proc. Edinb.
Math. Soc. 45(2) (2002), 507–511.
[13] T.-K. Lee, Finiteness properties of differential polynomials, Linear Algebra Appl.
430(8/9) (2009), 2030–2041.
[14] T.-K. Lee and T.-L. Wong, Semiprime algebras with finiteness conditions, Comm.
Algebra, 31(4) (2003), 1823–1835.
[15] T.-K. Lee and T.-L. Wong, Linear generalized polynomials with finiteness conditions.,
Comm. Algebra 32(12) (2004), 4535–4542.
[16] T.-K. Lee and W.-K. Shiue, Linear identities and derivations, Comm. Algebra
28(7) (2000), 3317–3327.
[17] W.S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J.
Algebra 12 (1969), 576–584
[18] W.S. Martindale, III and C.R. Miers, On the iterates of derivations of prime rings,
Pacific J. Math. 104 (1983), 179–190.
[19] L.H. Rowen, “Polynomial Identities in Ring Theory”, Academic Press, New York,
1980.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26066-
dc.description.abstract令 R 是一個質環, R 的擴張質心為 C,右馬汀達爾商環為 Q。假設 G 是 R的一個泛導函數以及 n 是一個正整數。在這篇論文中,我們研究當由 Gn(I),Gn(L), S 和 G(ρ) 生成之 C-向量子空間是有限維度時的性質,其中 I 是 R 的一個非零理想, L 是R的非交換算子李理想,ρ是 R 的一個非零右零想以及 S 定義成 S = {[x,δ(x)] | x ∈ρ}。 另外,有限性質也有被研究到。zh_TW
dc.description.abstractLet R be a prime ring with extended centroid C and with right Martindale quotient ring Q. Suppose that G is a nonzero generalized derivation of R and n is a positive integer. In the thesis we investigate the finite-dimensionality for C-subspaces spanned by Gn(I), Gn(L), S and G(ρ), where I is a nonzero ideal of R, L a noncentral Lie ideal of R, ρ a nonzero right ideal of R and S := { [x,δ(x)] | x ∈ ρ}. The finiteness properties are also investigated.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:59:30Z (GMT). No. of bitstreams: 1
ntu-98-R96221024-1.pdf: 406886 bytes, checksum: 07d0b9fba572abe6e8e0acbe4a961695 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書…………………………………………………… I
Acknowledgement …………………………………………………… II
摘要 ………………………………………………………………… III
Abstract ………………………………………………………………IV
Contents ……………………………………………………………… V
1 Results………………………………………………………………1
2 Proofs……………………………………………………………… 3
Reference …………………………………………………………… 15
dc.language.isoen
dc.subject廣多項式恆等式zh_TW
dc.subject質環zh_TW
dc.subject(泛)導函數zh_TW
dc.subject李理想zh_TW
dc.subject多項式恆等式zh_TW
dc.subjectPrime ringen
dc.subjectGPI.en
dc.subjectPIen
dc.subjectLie idealen
dc.subject(generalized) derivationen
dc.title質環上高階泛導之有限性性質zh_TW
dc.titleFiniteness properties of higher generalized derivations in prime rings.en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李白飛(Pjek-Hwee Lee),劉承楷
dc.subject.keyword質環,(泛)導函數,李理想,多項式恆等式,廣多項式恆等式,zh_TW
dc.subject.keywordPrime ring,(generalized) derivation,Lie ideal,PI,GPI.,en
dc.relation.page16
dc.rights.note未授權
dc.date.accepted2009-06-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
397.35 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved