Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2604
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐年盛
dc.contributor.authorChi-Jen Huangen
dc.contributor.author黃琦蓁zh_TW
dc.date.accessioned2021-05-13T06:42:55Z-
dc.date.available2018-02-16
dc.date.available2021-05-13T06:42:55Z-
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-02-13
dc.identifier.citationAbudu, S., King, J.P., Pagano, T.C., 2010. Application of partial least-squares regression in seasonal streamflow forecasting. J. Hydrol. Eng., 15(8): 612-623.
Alaouze, C.M., 1989. Reservoir releases to uses with different reliability requirements. Water Resour. Bull., 25(6): 1163-1168.
Alberta Environment, 2014. Approved water management plan for the Battle River Basin (Alberta). Alberta Environment.
An, H., Eheart, J.W., 2006. Evaluation of programs for regulating withdrawal of surface water under the riparian legal system. Journal of Water Resources Planning and Management-Asce, 132(5): 385-394.
Anderberg, M.R., 1973. Cluster analysis for applications. Academic Press, New York.
Bhaskar, N.R., O'Connor, C.A., 1989. Comparison of method of residuals and cluster-analysis for flood regionalization. Journal of Water Resources Planning and Management-Asce, 115(6): 793-808.
Bloschl, G., Sivapalan, M., Wagener, T., Viglione, A., Savenije, H., 2013. Runoff prediction in ungauged basins. Synthesis across processes, places and scales. Cambridge University Press, Cambridge.
Boscarello, L., Ravazzani, G., Cislaghi, A., Mancini, M., 2016. Regionalization of Flow-Duration Curves through Catchment Classification with Streamflow Signatures and Physiographic-Climate Indices. J. Hydrol. Eng., 21(3).
Caruso, B.S., 2014. GIS-based stream classification in a mountain watershed for jurisdictional evaluation. Journal of the American Water Resources Association, 50(5): 1304-1324.
Castellarin, A., Galeati, G., Brandimarte, L., Montanari, A., Brath, A., 2004. Regional flow-duration curves: reliability for ungauged basins. Advances in Water Resources, 27(10): 953-965.
Castiglioni, S., Castellarin, A., Montanari, A., 2009. Prediction of low-flow indices in ungauged basins through physiographical space-based interpolation. J. Hydrol., 378(3-4): 272-280.
Castiglioni, S., Castellarin, A., Montanari, A., Skoien, J.O., Laaha, G., Bloeschl, G., 2011. Smooth regional estimation of low-flow indices: physiographical space based interpolation and top-kriging. Hydrol. Earth Syst. Sci., 15(3): 715-727.
Cerny, B.A., Kaiser, H.F., 1977. Study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate Behavioral Research, 12(1): 43-47.
Chiang, S.M., Tsay, T.K., Nix, S.J., 2002a. Hydrologic regionalization of watersheds. I: Methodology development. Journal of Water Resources Planning and Management-Asce, 128(1): 3-11.
Chiang, S.M., Tsay, T.K., Nix, S.J., 2002b. Hydrologic regionalization of watersheds. II: Applications. Journal of Water Resources Planning and Management-Asce, 128(1): 12-20.
Cooper, R.M., 2002. Determining Surface Water Availability in Oregon. State of Oregon Water Resources Department.
Dellapenna, J.W., 1995. The natural resources law manual, R. J. Fink, ed., Part VI Regulated Riparianism. American Bar, Chicago.
Fennessey, N., Vogel, R.M., 1990. Regional flow-duration curves for ungauged sites in Massachusetts. Journal of Water Resources Planning and Management-Asce, 116(4): 530-549.
Fisher, R.A., 1936. The use of multiple measurements in tazonomic problems. 7(2): 179-188.
Ganora, D., Claps, P., Laio, F., Viglione, A., 2009. An approach to estimate nonparametric flow duration curves in ungauged basins. Water Resour. Res., 45.
Geladi, P., Kowalski, B.R., 1986. Partial least-squares regression - A tutorial. Analytica Chimica Acta, 185: 1-17.
Gustard, A., Demuth, S., 2009 Manual on low-flow estiomation and prediction. Operational Hydrology Report No.50. WMO-No.1029.
Holmes, M.G.R., Young, A.R., Goodwin, T.H., Grew, R., 2005. A catchment-based water resource decision-support tool for the United Kingdom. Environ. Modell. Softw., 20(2): 197-202.
Hope, A., Bart, R., 2012. Synthetic monthly flow duration curves for the Cape Floristic Region, South Africa. Water Sa, 38(2): 191-200.
Hotelling, H., 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24: 417-441.
Irving, K., Bullock, A., 1991. Estimation of low flows in artificially influenced catchments- Review of existing NRA procedures. National Rivers Authority, Bristol, UK.
Isik, S., Singh, V.P., 2008. Hydrologic regionalization of watersheds in Turkey. J. Hydrol. Eng., 13(9): 824-834.
Jacobs, J.M., Vogel, R.M., 1998. Optimal allocation of water withdrawals in a river basin. Journal of Water Resources Planning and Management-Asce, 124(6): 357-363.
Koch, H., Gruenewald, U., 2009. A comparison of modelling systems for the development and revision of water resources management plans. Water Resour. Manag., 23(7): 1403-1422.
Kroll, C.N., Song, P., 2013. Impact of multicollinearity on small sample hydrologic regression models. Water Resour. Res., 49(6): 3756-3769.
Latt, Z.Z., Wittenberg, H., Urban, B., 2015. Clustering hydrological homogeneous regions and neural network based index flood estimation for ungauged catchments: An example of the Chindwin River in Myanmar. Water Resour. Manag., 29(3): 913-928.
Li, M., Shao, Q.X., Zhang, L., Chiew, F.H.S., 2010. A new regionalization approach and its application to predict flow duration curve in ungauged basins. J. Hydrol., 389(1-2): 137-145.
Loucks, D.P.S., J. R.; Haith, D. A., 1981. Water resource systems planning and analysis, Englewood Cliffs, N.J.
Mehaiguene, M., Meddi, M., Longobardi, A., Toumi, S., 2012. Low flows quantification and regionalization in North West Algeria. Journal of Arid Environments, 87: 67-76.
Mendicino, G., Senatore, A., 2013. Evaluation of parametric and statistical approaches for the regionalization of flow duration curves in intermittent regimes. J. Hydrol., 480: 19-32.
Mohamoud, Y.M., 2008. Prediction of daily flow duration curves and streamflow for ungauged catchments using regional flow duration curves. Hydrol. Sci. J.-J. Sci. Hydrol., 53(4): 706-724.
Mosley, M.P., 1981. Delimitation of New Zealand hydrologic regions. J. Hydrol., 49(1-2): 173-192.
Mueller, F.A., Male, J.W., 1993. A management model for specification of groundwater withdrawal permits. Water Resour. Res., 29(5): 1359-1368.
Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models: part 1. A discussion of principles. J. Hydrol., 10(3): 282–290.
Nathan, R.J., McMahon, T.A., 1990. Inentification of homogeneous regions for the purposes of regionalisation. J. Hydrol., 121(1-4): 217-238.
Olden, J.D., Kennard, M.J., Pusey, B.J., 2012. A framework for hydrologic classification with a review of methodologies and applications in ecohydrology. Ecohydrology, 5(4): 503-518.
Ouarda, T., Girard, C., Cavadias, G.S., Bobee, B., 2001. Regional flood frequency estimation with canonical correlation analysis. J. Hydrol., 254(1-4): 157-173.
Pearson, K., 1901. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2(7-12): 559-572.
Pugliese, A., Castellarin, A., Brath, A., 2014. Geostatistical prediction of flow-duration curves in an index-flow framework. Hydrol. Earth Syst. Sci., 18(9): 3801-3816.
Rao, A.R., Srinivas, V.V., 2006. Regionalization of watersheds by hybrid-cluster analysis. J. Hydrol., 318(1-4): 37-56.
Rogers, P.P., Fiering, M.B., 1986. Use of systems-analysis in water management. Water Resour. Res., 22(9): S146-S158.
Searcy, J.K., 1959. Flow-duration curves, Washingtion, D.C.
Shu, C., Ouarda, T.B.M.J., 2012. Improved methods for daily streamflow estimates at ungauged sites. Water Resour. Res., 48: 1-15.
Snelder, T.H., Booker, D.J., Lamouroux, N., 2011. A method to assess and define environmental flow rules for large jurisdictional regions. Journal of the American Water Resources Association, 47(4): 828-840.
Snelder, T.H., Lamouroux, N., Leathwick, J.R., Pella, H., Sauquet, E., Shankar, U., 2009. Predictive mapping of the natural flow regimes of France. J. Hydrol., 373(1-2): 57-67.
UC Davis Center for Watershed Sciences, 2014. Cumulative water-right allocations relative to mean annual runoff, excluding water rights for hydropower generation.
UK Environment Agency, 2013. Broadland Abstraction Licensing Strategy-A licensing strategy to manage water resources sustainably.
Vezza, P., Comoglio, C., Rosso, M., Viglione, A., 2010. Low Flows Regionalization in North-Western Italy. Water Resour. Manag., 24(14): 4049-4074.
Vogel, R.M., Fennessey, N.M., 1994. Flow-duration curves .2. New interpretation and confidence-intervals. Journal of Water Resources Planning and Management-Asce, 120(4): 485-504.
Vogel, R.M., Fennessey, N.M., 1995. Flow duration curves .2. A review of applications in water-resources planning. Water Resour. Bull., 31(6): 1029-1039.
Wurbs, R.A., 2004. Water allocation systems in Texas. International Journal of Water Resources Development, 20(2): 229-242.
Wurbs, R.A., 2006. Methods for developing naturalized monthly flows at gaged and ungaged sites. J. Hydrol. Eng., 11(1): 55-64.
Yeh, W.W.G., 1985. Reservoir management and operations models - A state-of-the-art review. Water Resour. Res., 21(12): 1797-1818.
Yu, P.S., Yang, T.C., Liu, C.W., 2002. A regional model of low flow for southern Taiwan. Hydrol. Process., 16(10): 2017-2034.
Zarafshani, K., Sharafi, L., Azadi, H., Van Passel, S., 2016. Vulnerability assessment models to drought: Toward a conceptual framework. Sustainability, 8(6).
Zhang, Y., Arthington, A.H., Bunn, S.E., Mackay, S., Xia, J., Kennard, M., 2012. Classification of flow regimes for environmental flow assessment in regulated rivers: the Huai River Basin, China. River Res. Appl., 28(7): 989-1005.
淡江大學,2014,「全臺河川水系地面水可用水量計算資訊系統建置計畫(3/3)」,經濟部水利署委託計畫。
經濟部,2015,烏溪鳥嘴潭人工湖工程計畫(核定本)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2604-
dc.description.abstract由於天然流量與人為取水之隨機性,河川可用水量及其可靠度不易採用確定性方法加以模擬。本研究利用流量延時曲線(flow duration curve, FDC)之特性建立一基於可靠度之最佳化河川流量分配模式,以評估河川上各取水位置之分配流量及其可靠度,進而推求流域剩餘之可用水量。本最佳化模式為一具有機率限制式之規劃模式,以混合整數線性規劃求解。
為推估未設站位置之流量延時曲線,首先進行水文區域劃分,作為流量選擇流量站之依據;應用主成分分析、集群分析及判別分析等方法對臺灣主要22水系進行水文區域劃分,透過將相鄰水系結合為若干連續區域方式,並比較其分群結果,使水系間之劃分界線更易於辨識。其次,應用三種迴歸方法建立流量延時曲線推估模式,包括傳統多元線性迴歸方法、主成分迴歸方法及偏最小二乘迴歸方法。利用交叉驗證比較模式表現,結果顯示傳統多元線性迴歸方法推估結果之不穩定現象,此乃由於其於不同流量超越機率值選入不同變數所致,主成分迴歸方法及偏最小二乘迴歸方法則可解決其選擇變數之困難,獲得更穩定之流量延時曲線推估結果。
最佳化河川流量分配模式應用於臺灣中部地區之烏溪,首先劃分661個次集水區作為流量分配之水文單元,利用烏溪所在水文區之流量站,以偏最小二乘迴歸方法建立未設站位置流量延時曲線推估模式;其次,以流域各水文單元之流量延時曲線推估結果作為未分配流量前之初始值,依據水文單元之上、下游關係建立最佳化河川流量分配模式,求解水系上130個既有取水申請之分配流量及其可靠度,與分配流量後各水文單元之剩餘可用水量。最後,利用最佳化河川流量分配模式評估新增水庫壩堰設施時,採用不同保留流量對下游既有取水之影響。
zh_TW
dc.description.abstractDeterministic approaches are difficult to apply when simulating water availability and reliability because of the natural stochastic variability of streamflow and water withdrawals. A reliability-based optimal streamflow allocation model was developed in this study using flow duration curves (FDCs) to evaluate allocations of streamflow and their associated reliabilities for each water abstraction location and water availability in the basin. The developed model is a chance constraint programming model, which was solved by mixed integer linear programming.
In order to estimate the FDCs at ungauged locations, hydrologic regions were delineated to select streamflow gaging stations in the first place. Twenty-two river basins in Taiwan with major demands were grouped into homogeneous regions using principal component analysis (PCA), cluster analysis (CA), and discriminant analysis (DA). The dividing line between two adjacent river basins was easier to differentiate by combining adjacent river basins to form several contiguous regions and comparing their clustering results. Second, models were built for FDC estimations, applying three regression methods including the traditional multiple linear regression (MLR), principle component regression (PCR), and partial least squares regression (PLSR). A comparison of the model performances obtained using a cross-validation procedure showed some unstable conditions for MLR in the regional regression models for estimating the FDC; this was due to the variation of selected variables among percentile flows. The PCR and PLSR approaches can address the difficulties of variable selection and achieve a more robust model of FDC estimation.
Optimal streamflow allocation model was applied to the Wu River, situated in the central part of Taiwan. First, Wu River catchments were divided into 661 sub-catchments as hydrological units for allocating streamflow. Based on the streamflow gaging stations in the hydrologic homogeneous region, regional regression models for estimating the FDC were built using PLSR method. The FDC estimation results of each hydrological unit in the river basin were taken as the initial values before allocating streamflow. Second, optimal streamflow allocation model was developed according to the upstream and downstream relationships of hydrological units. The allocation of streamflow and their associated reliabilities for 130 existing withdrawal sites and water availability for each hydrological units were solved by the optimal model. Finally, optimal streamflow allocation model was applied to evaluate the instream flow reserved by a new reservoir and their influence on the downstream existing withdrawal sites.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:42:55Z (GMT). No. of bitstreams: 1
ntu-106-D99521015-1.pdf: 8430921 bytes, checksum: a20b9b262cc6a24e080d59b853b90a5b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 河川流量及其可靠度分析方面 3
2.2 河川流量分配方面 6
第三章 研究方法及步驟 8
3.1 研究流程 8
3.2 劃分水文區域 10
3.3 建立未設站位置流量延時曲線推估模式 13
3.4 最佳化河川流量分配模式 17
第四章 方法應用 23
4.1 研究範圍 23
4.2 變數選擇 26
4.3 劃分水文區域 27
4.4 以不同迴歸方法建立流量延時曲線推估模式 34
4.5 模擬河川流量分配及其可靠度 40
4.6 評估河道內保留流量 60
第五章 結論與建議 66
5.1 結論 66
5.2 建議 68
參考文獻 69
dc.language.isozh-TW
dc.subject混合整數線性規劃zh_TW
dc.subject可用水量zh_TW
dc.subject流量延時曲線zh_TW
dc.subject機率限制式zh_TW
dc.subjectFlow duration curveen
dc.subjectMixed integer linear programmingen
dc.subjectChance constrainten
dc.subjectWater availabilityen
dc.title以基於可靠度之最佳化河川流量分配模式評估流域可用水量zh_TW
dc.titleEvaluation Water Availability Using Reliability-Based Optimal Streamflow Allocation Modelen
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee王如意,許銘熙,劉振宇,游保杉,虞國興
dc.subject.keyword可用水量,流量延時曲線,機率限制式,混合整數線性規劃,zh_TW
dc.subject.keywordWater availability,Flow duration curve,Chance constraint,Mixed integer linear programming,en
dc.relation.page110
dc.identifier.doi10.6342/NTU201700485
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-02-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf8.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved