請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26049完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林金全(King-Chuen Lin) | |
| dc.contributor.author | Yu-Ting Liu | en |
| dc.contributor.author | 劉昱廷 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:59:10Z | - |
| dc.date.copyright | 2009-07-14 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-06-30 | |
| dc.identifier.citation | (1) Kauppinen, J.; Partanen, J. Fourier transforms in spectroscopy, 1st ed.; Wiley-VCH: Berlin ; New York, 2001.
(2) Griffiths, P. R.; De Haseth, J. A. Fourier transform infrared spectrometry, 2nd ed.; Wiley-Interscience: Hoboken, N.J., 2007. (3) Griffiths, P. R. Transform techniques in chemistry; Plenum Press: New York, 1978. (4) Bretzlaff, R. S.; Bahder, T. B. Revue De Physique Appliquee 1986, 21, 833. (5) http://www.ericweisstein.com/research/thesis/node37.html (6) Griffith.Pr; Foskett, C. T.; Curbelo, R. Applied Spectroscopy Reviews 1972, 6, 31. (7) Lephardt, J. O.; Vilcins, G. Applied Spectroscopy 1975, 29, 221. (8) Ferraro, J. R.; Basile, L. J. Fourier transform infrared spectroscopy : applications to chemical systems; Academic Press: New York, 1978. (9) Griffiths, P. R.; Hirsche, B. L.; Manning, C. J. Vibrational Spectroscopy 1999, 19, 165. (10) Yang, H. E.; Griffiths, P. R.; Manning, C. J. Applied Spectroscopy 2002, 56, 1281. (11) C.J. Manning, Proc. 11th Int. Conf. on Fourier Transform Spectrosc., AIP Conf. Proceedings, Vol. 430, 1998, 84 (12) Rogers, S. A.; Leone, S. R. Applied Spectroscopy 1993, 47, 1430. (13) Seakins, P. W.; Leone, S. R. Journal of Physical Chemistry 1992, 96, 4478. (14) Palmer, R. A.; Manning, C. J.; Rzepiela, J. A.; Widder, J. M.; Chao, J. L. Applied Spectroscopy 1989, 43, 193. (15) Johnson, T. J.; Simon, A.; Weil, J. M.; Harris, G. W. Applied Spectroscopy 1993, 47, 1376. (16) Palmer, R. A.; Chao, J. L.; Dittmar, R. M.; Gregoriou, V. G.; Plunkett, S. E. Applied Spectroscopy 1993, 47, 1297. (17) Hartland, G. V.; Xie, W.; Dai, H. L.; Simon, A.; Anderson, M. J. Review of Scientific Instruments 1992, 63, 3261. (18) Palmer, R. A.; Smith, G. D.; Chen, P. Y. Vibrational Spectroscopy 1999, 19, 131. (19) Banwell, C. N. Fundamentals of molecular spectroscopy; McGraw-Hill: London, 1972. (20) Bernath, P. F. Spectra of atoms and molecules, 2nd ed.; Oxford University Press: Oxford ; New York, 2005. (21) McQuarrie, D. A.; Simon, J. D. Physical chemistry : a molecular approach; University Science Books: Sausalito, Calif., 1997. (22) Steinfeld, J. I. Molecules and radiation : an introduction to modern molecular spectroscopy, 2nd ed.; Dover Publications: Mineola, N.Y., 2005. (23) Herzberg, G. Molecular spectra and molecular structure, 2nd ed.; R.E. Krieger Pub. Co.: Malabar, Fla., 1989. (24) Hall, G. E.; Muckerman, J. T.; Preses, J. M.; Weston, R. E.; Flynn, G. W.; Persky, A. Journal of Chemical Physics 1994, 101, 3679. (25) Wayne, R. P. Principles and applications of photochemistry; Oxford University Press: Oxford [England] ; New York, 1988. (26) Barltrop, J. A.; Coyle, J. D. Principles of photochemistry; Wiley: Chichester [Eng.] ; New York, 1978. (27) McQuarrie, D. A. Statistical thermodynamics; University Science Books: Mill Valley, CA, 1973. (28) Gasser, R. P. H.; Richards, W. G. An introduction to statistical thermodynamics; World Scientific: Singapore ; River Edge, N.J., 1995. (29) McQuarrie, D. A.; Simon, J. D. Molecular thermodynamics; University Science Books: Sausalito, Calif., 1999. (30) Engel, T.; Reid, P. Thermodynamics, statistical thermodynamics, and kinetics; Pearson Benjamin Cummings: San Francisco, 2006. (31) Person, M. D.; Kash, P. W.; Butler, L. J. Journal of Chemical Physics 1992, 97, 355. (32) Deshmukh, S.; Hess, W. P. Journal of Chemical Physics 1994, 100, 6429. (33) North, S.; Blank, D. A.; Lee, Y. T. Chemical Physics Letters 1994, 224, 38. (34) Deshmukh, S.; Myers, J. D.; Xantheas, S. S.; Hess, W. P. Journal of Physical Chemistry 1994, 98, 12535. (35) Person, M. D.; Kash, P. W.; Butler, L. J. Journal of Physical Chemistry 1992, 96, 2021. (36) Butler, L. J. Annual Review of Physical Chemistry 1998, 49, 125. (37) Arunan, E. Journal of Physical Chemistry A 1997, 101, 4838. (38) Shibata, T.; Suzuki, T. Chemical Physics Letters 1996, 262, 115. (39) Tang, X.; Ratliff, B. J.; FitzPatrick, B. L.; Butler, L. J. Journal of Physical Chemistry B 2008, 112, 16050. (40) Rowland, B.; Hess, W. P. Journal of Physical Chemistry A 1997, 101, 8049. (41) Chen, S. L.; Fang, W. H. Journal of Physical Chemistry A 2007, 111, 9355. (42) http://www.bruker.com/ (43) Li, H. G.; Li, Q.; Mao, W. T.; Zhu, Q. H.; Kong, F. N. Journal of Chemical Physics 1997, 106, 5943. (44) Ogilvie, J. F.; Cheah, S. L.; Lee, Y. P.; Sauer, S. P. A. Theoretical Chemistry Accounts 2002, 108, 85. (45) Hancock, G.; Haverd, V. Chemical Physics Letters 2003, 372, 288. (46) Su, H. M.; Mao, W. T.; Kong, F. N. Chemical Physics Letters 2000, 322, 21. (47) Sumathi, R.; Chandra, A. K. Journal of Chemical Physics 1993, 99, 6531. (48) Chen, S. L.; Fang, W. H. Journal of Physical Chemistry A 2006, 110, 944. (49) Haas, Y. Photochemical & Photobiological Sciences 2004, 3, 6. (50) Moore, C. B.; Weisshaar, J. C. Annual Review of Physical Chemistry 1983, 34, 525. (51) M. J. Frisch, M. Head-Gordon, G. W. Trucks et al., GAUSSIAN 98, Revision A.5 (Gaussian, Inc., Pittsburgh, PA, 1998) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/26049 | - |
| dc.description.abstract | 本論文研究乙醯氯分子(CH3COCl)在淬熄氣體Ar或O2的存在情況下,吸收單一248 nm雷射光子所進行之光分解反應,並利用步進式時域解析傅立葉轉換紅外光譜法在吸收的條件與偵測光解產物HCl、CO與CO2。吾人分析光分解產物HCl與CO的時域解析紅外放射光譜,進而推求出不同時間下光分解產物的振動與轉動能階的相對分佈與能量,觀測得知HCl產物的振動與轉動能階最高分別可達到3與約10,而CO產物的振動與轉動能階最高分別可達到4與約30。光分解產物HCl與CO的初始分佈與能量以溫度外推的方式推算取得。
根據前人研究,在無碰撞的氣態環境下,乙醯氯分子的光分解通道以碳氯鍵斷鍵產生CH3CO跟Cl為主要通道;而在凝態中,唯一光分解通道為產生T型的HCl•CH2CO複合物。本研究的實驗條件為碰撞可發生的氣態環境下觀測光分解的反應,吾人首次發現Ar或O2的加入有助於碰撞誘發內轉換(collision-induced internal conversion),促使吸收一248 nm雷射光子能量躍遷至第一電子激發態(S1)的乙醯氯分子以非放光性躍遷(radiationless transition)形式轉換至高內能的電子基態(S0),再進行解離而產生光分解產物HCl跟CO。本研究可直接藉由其特徵紅外放射譜線直接確認HCl跟CO的生成,而光分解產物CH2的生成則以其跟O2反應所產生的CO2特徵紅外放射譜線間接確認。HCl,CO與CH2等光分解產物推測是經由一新的三體同時分裂之光解途徑所生成。 | zh_TW |
| dc.description.abstract | In one-photon dissociation of acetyl chloride CH3COCl at 248 nm, time-resolved Fourier-transform Infrared emission spectroscopy is used to detect the primary fragments of HCl, CO, and CH2 in the presence of Ar or O2. Emission from both CO and HCl was observed. Spectrum analyses are carried out for HCl and CO fragments to yield the information of population distribution and energies of rotational and vibrational levels. Assignments of the HCl spectra are shown vibrational level is populated up to 3 and rotational level J up to ~10. For CO product, the rotational level J is up to ~30 and vibrational level is up to 4. Nascent populations and energies are also obtained by extrapolated the temperatures to t=0 for both HCl and CO fragments.
In previous works, the photodissociation of acetyl chloride is dominant by the C-Cl bond cleavage in collision-free gas phase and exclusive HCl elimination channel from the HCl.CH2CO complex with a T-shaped structure is confirmed in condensed phase. It is for the first time to find that the Ar or O2 addition in the gas phase photodissociation of CH3COCl may facilitate collision-induced internal conversion process with which the HCl and CO elimination are associated. In this study, the HCl and CO fragments are confirmed directly by the particular infrared emission observation; on the other hand, the CO2 emission is postulated by the third photofragment CH2 reacted with O2. The observed fragments are anticipated to result from a dissociation channel via a converted three-body photodissociation mechanism, which is unfounded ever before. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:59:10Z (GMT). No. of bitstreams: 1 ntu-98-R96223111-1.pdf: 2386845 bytes, checksum: 2290bb97f77c385735c2d4fe7abb5600 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Chinese abstract IV
Abstract V Figure captions VI Table captions XI I. Introduction of time-resolved infrared spectroscopy 1 Basic principle of FTIR 1 Effect of signal sampling 4 Effect of finite resolution 6 Effect of apodization 6 Phase effect 9 Advantages of FTIR 11 II. Techniques of time-resolved FTIR 20 Rapid-scan 20 Ultrarapid scan 22 Stroboscopic sampling 22 Step scan 24 III. Molecular spectroscopy 31 Term value 31 Harmonic oscillator 31 Anharmonic oscillator 31 Rigid rotor 32 Non-rigid rotor 32 Selection rule 33 Relative population calculation 33 Rotational and vibrational temperatures and energies 35 IV. Introduction of acetyl chloride 39 Photodissociation in collision-free gas phase 39 Photodissociation of acetyl chloride in the condensed phase 40 V. Experimental setup 41 Sample preparation 41 Laser system 41 Reaction chamber 42 Multipass optical system 43 FTIR (Bruker IFS 66v/s) 44 Signal detection system 45 System calibration 47 Spectral calibration 49 VI. Results 57 Time evolution of HCl infrared emission 58 Spectral assignments of HCl emission 59 Rotation-vibrational populations of HCl emission 59 Rotation-vibrational temperatures and energies of HCl emission 60 HCl within Ar collider (HCl/Ar) 60 HCl within O2 collider (HCl/O2) 62 Time evolution of CO infrared emission 63 Spectral assignments of CO emission 63 Rotation-vibrational populations of CO emission 64 Rotation-vibrational temperatures and energies of CO emission 65 CO within Ar collider (CO/Ar) 65 CO within O2 collider (CO/O2) 66 Laser power dependence 66 Quencher pressure dependence 67 CO2 channel 68 Photodissociation mechanism 69 Theoretical calculation 75 Conclusion 77 VII. Reference 106 | |
| dc.language.iso | en | |
| dc.subject | 乙醯氯 | zh_TW |
| dc.subject | 時間解析光譜 | zh_TW |
| dc.subject | 紅外放光 | zh_TW |
| dc.subject | 步進式掃描傅立業轉換光譜法 | zh_TW |
| dc.subject | rotational population | en |
| dc.subject | step-scan Fourier transform spectroscopy | en |
| dc.subject | time-resolved spectra | en |
| dc.subject | infrared emission | en |
| dc.subject | acetyl chloride | en |
| dc.subject | photodissociation | en |
| dc.subject | CH3COCl | en |
| dc.subject | HCl | en |
| dc.subject | CO | en |
| dc.subject | vibrational population | en |
| dc.title | 利用步進式時域解析傅立葉轉換紅外光譜法研究乙醯氯之光分解反應 | zh_TW |
| dc.title | Photodissociation of Acetyl Chloride Detected by Time-resolved Fourier Transform Infrared Spectroscopy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾文碧(Wen-Bih Tzeng),張秀華(Hsiu-Hua Chang) | |
| dc.subject.keyword | 步進式掃描傅立業轉換光譜法,時間解析光譜,紅外放光,乙醯氯, | zh_TW |
| dc.subject.keyword | step-scan Fourier transform spectroscopy,time-resolved spectra,infrared emission,acetyl chloride,photodissociation,CH3COCl,HCl,CO,rotational population,vibrational population, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-01 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
