請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25972完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳進庭 | |
| dc.contributor.author | Yu-Wen Liu | en |
| dc.contributor.author | 劉育妏 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:57:49Z | - |
| dc.date.copyright | 2009-07-28 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-14 | |
| dc.identifier.citation | 1. 王澤嫻。2008。以微脂體或微胞包埋血紫質之光動力殺菌探討。
2. 國家衛生研究院電子報第 188 期。2007。 3. Ayres, H. M., J. R. Furr, and A. D. Russell. 1999. Effect of permeabilizers on antibiotic sensitivity of Pseudomonas aeruginosa. Letters in Applied Microbiology 28: 13–16. 4. Bun-Hur, E., Hoeben, R. C., Van Ormondt, H., Dubbelman, T. M. & Van Steveninck, J. 1992. Photodynamic inactivation of retroviruses by phthalocyanines: the effects of sulphonation, metal ligand and fluoride. Journal of Photochemistry and Photobiology B 13:145-52. 5. Carre, V., Gaud, O., Sylvain, I., Bourdon, O., Spiro, M., Blais, J. 1999. Fungicidal properties of meso-arylglycosylporphyrins: influence of sugar substituents on photoinduced damage in the yeast Saccharomyces cerevisiae. Journal of Photochemistry and Photobiology B 48: 57-62. 6. Cauchon, N., H. Tian, R. Langlois, C. La Madeleine, S. Martin, H. Ali, D. Hunting, J.E. Van Lier. 2005. Structure-photodynamic activity relationships of substituted zinc trisulfophthalocyanines, Bioconjug. Chem. 16: 80–89. 7. Chang, S. C., L.Y. Hsu, K. T. Luh. 1988. Methicillinresistant Staphylococcus aureus infections. J Formos Med Assoc 87: 157-63. 8. Chang, S. C., W. C. Hsieh. 1996. Current status of bacterial antibiotic resistance in Taiwan. J Infect Dis Society, R.O.C. 7: 83-8. 9. Chang, S. C., C. C. Sun, L. S. Yang. 1997. Increasing nosocomial infections of methicillin-resistant Staphylococcus aureus at a teaching hospital in Taiwan. Int J Antimicrob Agents 8: 109-14. 10. Chang, S. C., W. C. Hsieh, C. Y. Liu. 2000. High prevalence of antibiotic resistance of common pathogenic bacteria in Taiwan. Diagn Microbiol Infect Dis 36: 107-12. 11. Creagh, T. A., M. Gleeson, D. Travis, R. Grainger, T. E. McDermott, and M. R. 1995. Is there a role for in vivo methylene blue staining in the prediction of bladder tumour recurrence? Br J Urol 75: 477-479. 12. Demidova, T. N., M. R. Hamblin. 2005. Effect of Cell-Photosensitizer Binding and Cell Density on Microbial Photoinactivation. Antimicrob Agents Chemother. 49: 2329–2335. 13. Foote, C. S. 1990. Future directions and applications in photodynamic theory. SPIE Institute Series 1S6: 115–26. 14. Franklin, D., M. D. Lowy. 1998. Staphylococcus aureu infections. The New England Journal of Medicine. 15. Fridkin, S. K. 2001. Vancomycin-intermediate and –resistant Staphylococcus aureus: what the infectious disease specialist needs to know. Clin Infect Dis 32: 108–115. 16. Friedrich, C. L., D. Moyles, T. J. Beveridge and R. E. Hancock. 2000. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 44: 2086–92. 17. Gerhardt, S. A., J. W. Lewis, D. S. Kliger, J. Z. Zhang, U. Simonis. 2003. Effect of micelles on oxygen-quenching processes of triplet-state para-substituted tetraphenylporphyrin photosensitizers, J. Phys. Chem., A 107: 2763–2767. 18. Hamblin, M. R., D. A. O’Donnell, N. Murthy, C. H. Contag, and T. Hasan. 2002. Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol 75: 51–57. 19. Hamblin M. R, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood & T. Hasan. 2002. Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemoth 49: 941–951. 20. Hamblin, M. R. and T. Hasan. 2003. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3: 436 –450. 21. Hiramatsu, K., H. H., T. Ino, K. Yabuta, T. Oguri and F. C. Tenover, 1997. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother 40: 135–6. 22. Hyo Y., S. Yamada, T. Harada. 2008. Characteristic cell wall ultrastructure of a macrolide-resistant Staphylococcus capitis strain isolated from a patient with chronic sinusitis. Med Mol Morphol. 41:160–164. 23. Ito, T. 1983. Photodynamic agents as tools for cell biology. Photochemistry and Photobiology Reviews 7: 141–86. 24. Kluytmans. Jan, A. V. Belkum, H. Verbrugh. 1997. Nasal Carriage of Staphylococcus aureus: Epidemiology, Underlying Mechanisms, and Associated Risks. Clincal microbiology reviews. 10: 505–520. 25. Kömerik, N., M. Wilson and S. Poole, 2000. The effect of photodynamic action on two virulence factors of Gram-negative bacteria. Photochem. Photobiol., 72: 676–680. 26. Kresken M, D. Hafner, U. D. Studiengruppe. 2000. Resistenzentwicklung bei klinisch wichtigen Infektionserregern gegenüber Chemotherapeutika in Mitteleuropa. Chemotherapie J 9:1–36. 27. Lambrechts S. A. G., M. C. G. Aalders, F. D. Verbraak, J. W. M. Lagerberg, J. Dankert, J. J. Schuitmaker. 2005. Effect of albumin on the photoiactivation of microorganisms by a cationic porphyrin. J Photochem Photobiol B: Biol 79: 51–57. 28. Laupland, K. B., M. D. Parkins, D. L. Church, D. B. Gregson, T. J. Louie, J. M. Conly, S. Elsayed, and J. D. Pitout. 2005. Population‐Based Epidemiological Study of Infections Caused by Carbapenem‐Resistant Pseudomonas aeruginosa in the Calgary Health Region: Importance of Metallo‐β‐Lactamase (MBL)–Producing Strains. J Infect Dis 192: 1606-12. 29. Maisch, T., R. M. Szeimies, G. Jori, and C. Abels 2004. Antibacterial photodynamic therapy in dermatology. Photochem. Photobiol. Sci. 3: 907–917. 30. Maisch, T. 2007. Anti-microbial photodynamic therapy: useful in the future? Lasers Med Sci 22: 83–91. 31. McGinley, K. J., J. J. Leyden, R. R. Marples and A. M. Kligman. 1975. Quantitative microbiology of the scalp in non-dandruff, dandruff, and seborrheic dermatitis. J. Invest. Dermatol. 64: 401–5. 32. Merchat, M., G. Bertolini, P. Giacomini, A. Villanueva and G. Jori. 1996. Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J. Photochem. Photobiol. B. 32: 153–7. 33. Minnock, A. D., I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. T. Brown. 1996. Photoinactivation of bacteria. Use of a cationic watersoluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria, J. Photochem. Photobiol. B. 32: 159–64. 34. Nagoba B., B. Wadher, P. Kulkarni, S. Kolhe. 2008. Photodynamic Therapy in the Treatment of Microbial Infections: Basic Principles and Perspective Applications. Eur J Gen Med. 5:104-106. 35. Nikaido H. and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49: 1–32. 36. Nitzan Y., M. Gutterman, Z. Malik and B. Ehrenberg. 1992. Inactivation of gram-negative bacteria by photosensitized porphyrins. Photochem. Photobiol. 55: 89–96. 37. Paramythiotou, E., J. C. Lucet, J. F. Timsit, D. Vanjak, C. Paugam-Burtz, J. L. Trouillet, S. Belloc, N. Kassis, A. Karabinis, A. Andremont. 2004. Acquisition of Multidrug-Resistant Pseudomonas aeruginosa in Patients in Intensive Care Units: Role of Antibiotics with Antipseudomonal Activity 38: 670-7. 38. Perlin, M., Mao, J. C., Otis, E. R., Shipkowitz, N. L. & Duff, R. G. 1987. Photodynamic inactivation of influenza and herpes viruses by hematoporphyrin. Antiviral Research 7: 43-51. 39. Prithiviraj, B., H. Bais, T. Weir, B. Suresh, E. Najarro, B. Dayakar, H. Schweizer, and J. Vivanco. 2005. Down Regulation of Virulence Factors of Pseudomonas aeruginosa by Salicylic Acid Attenuates Its Virulence on Arabidopsis thaliana and Caenorhabditis elegans . Infect Immun. 73: 5319-5328. 40. Raafat, D., K. Bargen, A. Hass, and H. G. Sahl. 2008. Insights into the mode of action of chitosan as an antibacterial compound. Applied and environmental microbiology 74: 3764-3373. 41. Russell, A.D., and I. Chopra. 1996. Understanding Antibacterial Action and Resistance 2nd edn. pp. 105–107. 42. Sato, T., D.-L. Jiang, and T. Aida. 1999. A blue-luminescent dendritic rod: poly (phenyleneethynylene) within a light-harvesting dendritic envelope. J. Am. Chem. Soc. 121: 10658–10659. 43. Schultz, K. A. 1928. Inactivation of staphylococcus bacteriophage by methylene blue. Proceedings of the Society of Expermental Biology and Medicine. 26: 100-101. 44. Scherrer R. and P. Gerhardt. 1971. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J. Bacteriol. 107: 718–35. 45. Sezgin, Z., N. Yuksel, and T. Baykara. 2007. Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. Int J Pharm 332: 161-7. 46. Sievert, D., M. Boulton, G. Stoltman, D. Johnson, M. Stobierski, F. Downes, P. Somsel, J. Rudrik, W. Brown, W. Hafeez, T. Lundstrom, E. Flanagan, R. Johnson, J. Mitchell, S. Chang. 2002. Staphylococcus aureus resistant to vancomycin — United States. MMWR Morb Mortal Wkly Rep 51: 565–567. 47. Singh, P. K., A. L. Schaefer, M. R. Parsek, T. O. Moninger, M. J. Welsh, and E. P. Greenberg. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407: 762–764. 48. Singh, P. K., M. R. Parsek, E. P. Greenberg, and M. J. Welsh. 2002. A component of innate immunity prevents bacterial biofilm development. Nature 417: 552–555. 49. Soncin, M., C. Fabris, G. Jori, G. Roncucci. unpublished observations. 50. Tappeiner, H. 1904. Zur Kenntnis der lichtwirkenden (fluoreszierenden) Stoffe. Dtsch Med Wochenschr 1: 579–58. 51. Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiological Reviews 56: 395–411. 52. Wainwright, M. 1998. Photodynamic antimicrobial chemotherapy (PACT) Journal of Antimicrobial Chemotherapy 42: 13–28. 53. Walther, J. Bröcker, D. Wätzlich, M. Nimtz, M. Rohde, D. Jahn and J. Moser. 2009. Protochlorophyllide: a newphotosensitizer for the photodynamic inactivation of Gram-positive and Gram-negative bacteria. FEMS microbiology letter. 290: 156-163. 54. Wilson, M. 1993. Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease. Journal of Applied Bacteriology 75: 299-306. 55. Živilė Lukšienė 2003. Photodynamic therapy : mechanism of action and ways to improve the efficiency of treatment. Medicina 39: 1137–1150. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25972 | - |
| dc.description.abstract | 在先前本實驗室發現的一種之生醫材料compound X (簡稱CX),合併於一種光感物質血紫質(Hematoprophyrin)之光動力殺菌,可以有效的增強光動力殺菌效果。本研究藉由將CX應用在其他種光感物質 Chlorin e6、Rose Bengal、Methylene Blue及Toluidine Blue O之光動力殺菌上,發現CX應用在這幾種不同帶電性及不同極性之光感物質對革蘭氏陽性菌金黃色葡萄球菌所造成的光動力殺菌都有增強殺菌的效果,顯示CX應用在不同種光感物質的光動力殺菌上之可行性。
再進一步了解使用微胞包埋脂溶性光感物質Chlorin e6 (PF127-Ce6)與free form Ce6,在與金黃色葡萄球菌培養不同時間或不同培養濃度的攝取量及光動力效應。結果顯示,不論是PF127-Ce6或是Free form Ce6,當光感物質與菌體在培養10分鐘之後光感物質的攝取量已達最大值;當與培養的光感物質濃度增強,攝取量也會隨之增高,光動力殺菌的效果也會跟著變強。一旦對革蘭氏陽性菌金黃色葡萄球菌的光動力殺菌效果達2 Logs以上,加入0.025% CX就可以增強殺菌效果達全殺。再更進一步研究探討,發現CX增強光動力殺菌也可應用於革蘭氏陰性菌綠膿桿菌及抗藥性金黃色葡萄球菌菌株,顯示CX應用於光動力殺菌上的潛力。 最後,在CX作用機制的研究上,針對CX不同的物理性質進行探討,發現不同濃度、不同分子量及不同去乙醯化程度之CX進行光動力殺菌後培養,發現增加CX濃度可增強光動力殺菌效果,而增強光動力殺菌效果和CX的分子量沒有明顯關係,但一旦CX的去乙醯化程度達85% 以上就有增強光動力殺菌之功效,顯示和CX增強光動力殺菌之機制和去乙醯化程度程度相關。 | zh_TW |
| dc.description.abstract | Previously, we have found that coincubation of compound X (CX) with Hematoprophyrin can enhance the photodynamic inactivation (PDI) effect against bacteria. In this study, we further investigate whether CX can also enhance the PDI efficacy mediated by other photosensitizers (PSs) in Gram positive as well as in Gram negative bacterium Staphylococcus aureus. We found that CX can also synergistically enhance the PDI antimicrobial effect mediated by Chlorin e6, Rose Bengal, Methylene Blue, and Toluidine Blue O with different charges and polarities. These results show the possibility of CX working in different PSs mediated PDI.
Furthermore, we address the uptake and PDI effect by the hydrophobic PS, Chlorine 6 (Ce6) in its free form or encapsulated by micelle (PF127-Ce6) for different incubation times and concentrations in S. aureus. We found that the uptakes of free form Ce6 and PF127-Ce6 reached the maximum after 10 minutes incubation. Besides, the uptake and PDI efficacy is proportional to the concentration of Ce6. We found that if the PDI can exert more than 2 logs in bacterial killing, 0.025% CX can synergistically result in complete killing. Meanwhile, CX can also enhance the PDI effect in Gram negative bacteria such as Pseudomonas aeruginosa and Methicillin-resistant S. aureus (MRSA). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:57:49Z (GMT). No. of bitstreams: 1 ntu-98-R96b47412-1.pdf: 1706496 bytes, checksum: d9df2c62fb69556ee55e45c18ee8834e (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
中文摘要........................................................................................................................i 英文摘要.......................................................................................................................ii 第一章、 緒論..............................................................................................................1 1.1 光動力治療 (Photodynamic therapy)..............................................................1 1.1.1光動力治療發展起源...................................................................................1 1.1.2光動力作用機制...........................................................................................1 1.1.3本研究使用之光感物質...............................................................................2 1.1.3.1 Chlorin e6...............................................................................................2 1.1.3.2 Methylene Blue......................................................................................3 1.1.3.3 Rose Bengal...........................................................................................3 1.1.3.4 Toluidine Blue O....................................................................................3 1.1.4光動力殺菌的研究.......................................................................................3 1.2 本研究菌種介紹......................................................................................................4 1.2.1 金黃色葡萄球菌(Staphylococcus aureus)......................................................4 1.2.2 抗藥型金黃色葡萄球菌(Methicillin-resistant S. aureus)...............................5 1.2.3 綠膿桿菌(Pseudomonas aeruginosa)..............................................................6 1.3 生醫材料CX...........................................................................................................6 1.4 研究動機與目的.....................................................................................................7 第二章、材料與方法....................................................................................................8 2.1光感物質..................................................................................................................8 2.2 光動力試驗其他物品.............................................................................................8 2.3菌株..........................................................................................................................8 2.4儀器..........................................................................................................................9 2.5微胞之製備..............................................................................................................9 2.6實驗方法................................................................................................................10 2.6.1 凍菌及活化....................................................................................................10 2.6.2 與光感物質及CX進行共培養及照光.........................................................10 2.6.3 與光感物質進行培養及照光後培養CX......................................................10 2.6.4 Ce6之攝取量測量..........................................................................................10 2.6.5 進行wash之光動力殺菌...............................................................................11 2.6.6菌落數計數......................................................................................................11 第三章、結果 3.1 [第一部分、以金黃色葡萄球菌進行測試CX對不同種光感物質PDI之影響].................................................................................................................................12 3.1.1 CX增強Chlorin e6對金黃色葡萄球菌的PDI效果.....................................12 3.1.1.1 Ce6對金黃色葡萄球菌之暗反應影響...................................................12 3.1.1.2 不同濃度之CX與Ce6及金黃色葡萄球菌進行共培養......................12 3.1.1.3 Ce6及金黃色葡萄球菌進行共培養及進行PDI之後再加入CX......12 3.1.2 測試CX增強Rose Bengal對金黃色葡萄球菌的PDI效果測試................13 3.1.3 CX後培養於Methylene Blue對金黃色葡萄球菌的PDI效果測試.............13 3.2 [第二部分、以金黃色葡萄球菌進行光感物質攝取量及光動力作用效果之關係測試].............................................................................................................................14 3.2.1以金黃色葡萄球菌測試不同濃度Ce6之PDI效果及其攝取Ce6含量之測試..............................................................................................................................14 3.2.2以金黃色葡萄球菌測試不同濃度Ce6之PDI效果及其攝取Ce6含量之測試..............................................................................................................................15 3.2.3以金黃色葡萄球菌測試不同濃度Free Ce6之PDI效果及其攝取Ce6含量之測試......................................................................................................................16 3.3 [第三部分、其他菌種進行測試CX增強PDI之效果]......................................16 3.3.1綠膿桿菌.........................................................................................................17 3.3.1.1 CX增強Chlorin e6對綠膿桿菌之光動力殺菌效果測試.....................17 3.3.1.2 CX對綠膿桿菌的PDI及MB之增強PDI效果探討............................18 3.3.1.3 CX對綠膿桿菌的PDI及TBO之增強PDI效果探討...........................18 3.3.2測試CX增強Toluidine Blue O對金黃色葡萄球菌的PDI效果測試..........18 3.3.3抗藥性金黃色葡萄球菌.................................................................................19 3.4 [第四部分、CX之溶劑對光動力殺菌的影響]....................................................19 3.4.1金黃色葡萄球菌及抗藥性金黃色葡萄球菌.................................................19 3.4.2 綠膿桿菌........................................................................................................20 3.5 [第五部分、探討CX之增強光動力效果機制]...................................................21 3.5.1增加CX濃度...................................................................................................21 3.5.2以不同分子量或不同去乙醯化程度之CX進行探討...................................21 第四章、討論................................................................................................................23 4.1 不同菌種加入CX之效果................................................................................23 4.2 醋酸對菌體的影響...........................................................................................24 圖表..............................................................................................................................26 附錄..............................................................................................................................53 參考文獻......................................................................................................................57 圖表目次 圖目錄 圖一、光動力作用機制圖...............................................................................2 圖二、Ce6對金黃色葡萄球菌之暗反應毒性測試.........................................26 圖三、CX合併Ce6對金黃色葡萄球菌之光動力殺菌效果........................27 圖四、Ce6對金黃色葡萄球菌之光動力殺菌及後培養CX.........................28 圖五、RB對金黃色葡萄球菌之光動力殺菌及後培養CX...........................29 圖六、MB對金黃色葡萄球菌之光動力殺菌及後培養CX..........................30 圖七、Ce6不同培養時間對金黃色葡萄球菌之攝取量、光動力殺菌及後培養CX................................................................................................................31 圖八、Ce6不同濃度對金黃色葡萄球菌之攝取量、光動力殺菌及後培養CX....................................................................................................................32 圖九、Free form Ce6不同濃度對金黃色葡萄球菌之攝取量、光動力殺菌及後培養CX........................................................................................................34 圖十、Ce6對綠膿桿菌之光動力殺菌及CX培養.........................................36 圖十一、MB對綠膿桿菌之光動力殺菌及後培養CX..................................38 圖十二、TBO對綠膿桿菌之光動力殺菌及後培養CX................................39 圖十三、TBO對金黃色葡萄球菌之光動力殺菌及後培養CX....................40 圖十四、TBO對抗藥性金黃色葡萄球菌之光動力殺菌及後培養CX........41 圖十五、醋酸對金黃色葡萄球菌之殺菌影響................................................43 圖十六、TBO對金黃色葡萄球菌之光動力殺菌及後培養醋酸...................44 圖十七、TBO的殘餘量對金黃色葡萄球菌後培養醋酸的影響....................45 圖十八、醋酸對抗藥性金黃色葡萄球菌之殺菌影響....................................46 圖十九、醋酸對綠膿桿菌之殺菌影響............................................................47 圖二十、CX濃度對金黃色葡萄球菌之殺菌影響.........................................49 圖二十一、TBO對金黃色葡萄球菌之光動力殺菌及後培養不同濃度之CX....................................................................................................................50 圖二十二、Ce6對金黃色葡萄球菌之光動力殺菌效果及後培養不同種CX....................................................................................................................51 表目錄 表一、不同種CX之去乙醯化程度及分子量................................................52 表二、1X PBS Buffer........................................................................................52 表三、BactoTM Tryptic Soy Broth (Soybean-Casein Digest Medium).............52 附錄目錄 附錄 附錄一、Chlorin e6結構.................................................................................53 附錄二、Methylene blue結構........................................................................53 附錄三、Rose Bengal結構.............................................................................53 附錄四、Toluidine Blue O結構......................................................................54 附錄五、細菌之細胞壁結構...........................................................................54 附錄六、鮑氏不動桿菌之TBO殺菌及後培養0.25% CX或0.25%醋酸........55 附錄七、綠膿桿菌之TBO殺菌及後培養以TSB稀釋之0.25% CX或0.33%醋酸......................................................................................................................56 | |
| dc.language.iso | zh-TW | |
| dc.title | 增強光動力殺菌物質CX的角色探討 | zh_TW |
| dc.title | Role of CX in increasing the antibacterial photodynamic inactivation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡翠敏,黃慶燦,許瑞祥,鄧麗珍 | |
| dc.subject.keyword | 光動力殺菌,革蘭氏陽性菌,革蘭氏陰性菌,抗藥性菌株, | zh_TW |
| dc.subject.keyword | Photodynamic inactivation,Gram positive bacteria,Gram negative bacteria,Antibiotics resistant bacteria, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
