請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25963完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林中天(Chung-Tien Lin) | |
| dc.contributor.author | Jih-Jong Lee | en |
| dc.contributor.author | 李繼忠 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:57:40Z | - |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-22 | |
| dc.identifier.citation | References
1. Moulton JE, Rosenblatt LS, Boldman M. Mammary tumors in a colony of beagle dogs. Vet Pathol 1986;23:741–749. 2. Schneider R, Dom CR, Taylor DO. Factors influencing canine mammary cancer development and postsurgical survival. J Natl Cancer Inst 1969;43:1249–1261. 3. MacEwen EG. Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev1990;9:125–136. 4. Medina D. The mammary gland: a unique organ for the study of development and tumorigenesis. J Mammary Gland Biol Neoplasia 1996;1:5–19. 5. Kumar R, Vadlamudi RK, Adam L. Apoptosis in mammary gland and cancer. Endocr Relat Cancer 2000;7:257–269. 6. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456–1462. 7. Lee JL, Lin CT, Chueh LL, et al. Autocrine/paracrine secreted frizzled-related protein 2 induces cellular resistance to apoptosis: a possible mechanism of mammary tumorigenesis. J Biol Chem 2004;279:14602–14609. 8. Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci U S A 1996;93:2239–2244. 9. O’Brien V. Viruses and apoptosis. J Gen Virol 1998;79:1833–1845. 10. Adair BM. Immunopathogenesis of chicken anemia virus infection. Dev Comp Immunol 2000;24:247–255. 11. Todd D, Creelan JL, Mackie DP, et al. Purification and biochemical characterization of chicken anemia agent. J Gen Virol 1990;71:819–823. 12. Noteborn MH, Kranenburg O, Zantema A, et al. Transcription of the chicken anemia virus (CAV) genome and synthesis of its 53-kDa protein. Gene 1992;118:267–271. 13. Jeurissen SH, Wagenaar F, Pol JM, et al. Chicken anemia virus causes apoptosis of thymocytes after in vivo infection and of cell lines after in vitro infection. J Virol 1992;66:7383–7388. 14. Coombes AL, Crawford GR. Recommended storage and resuscitation conditions for the MDCC-MSB1 cell line. Avian Dis 1998;42:168–172. 15. Koch G, van Roozelaar DJ, Verschueren CA, et al. Immunogenic and protective properties of chicken anaemia virus proteins expressed by baculovirus. Vaccine 1995;13:763–770. 16. Chiu CS, Hong CY, Lee JJ, et al. A Taiwanese isolate of chicken anemia virus induces apoptosis in the in vitro culture cells. J Chin Soc Vet Sci 2001;27:74–79. 17. Noteborn MH, Todd D, Verschueren CA, et al. A single chicken anemia virus protein induces apoptosis. J Virol 1994;68:346–351. 18. Noteborn MH, Zhang YH, van der Eb AJ. VP3 specifically causes apoptosis in tumor cells and after UV-treatment in untransformed cells from cancer-prone individuals: a review. Mutat Res 1998;400:447–455. 19. Noteborn MH. Chicken anemia virus induced apoptosis: underlying molecular mechanisms. Vet Microbiol 2004;98:89–94. 20. Maddika S, Booy EP, Johar D, et al. Cancer-specific toxicity of VP3 is independent of death receptors but involves the loss of mitochondrial membrane potential and the release of mitochondrial cell-death mediators by a Nur77-dependent pathway. J Cell Sci 2005;118:4485–4493. 21. Danen-Van Oorschot AA, Fischer DF, Grimbergen JM, et al. VP3 induces apoptosis in human transformed and malignant cells but not in normal cells. Proc Natl Acad Sci U S A 1997;94:5843–5847. 22. Lee JL, Chang CJ, Chueh LL, et al. Expression of secreted frizzled-related protein 2 in a primary canine mammary tumor cell line: a candidate tumor marker for mammary tumor cells. In Vitro Cell Dev Biol Anim 2003;39:2221–2227. 23. Yang SH, Lee JJ, Chiu CS, et al. Molecular cloning and sequence analysis of VP3 gene of chicken anemia virus Taiwanese Ilan strain. J Chin Soc Vet Sci 2000;26:182–189. 24. Poeschla EM, Wong-Staal F, Looney DJ. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 1998;4:354–357. 25. Pietersen AM, Rutjes SA, van Tongeren J, et al. The tumorselective viral protein VP3 effectively kills human biliary tract cancer cells. J Mol Med 2004;82:56–63. 26. van Santen VL, Li L, Hoerr FJ, et al. Genetic characterization of chicken anemia virus from commercial broiler chickens in Alabama. Avian Dis 2001;45:73–88. 27. Zhuang SM, Shvarts A, van Ormondt H, et al. VP3, a protein derived from chicken anemia virus, induces p53, a protein derived from chicken anemia virus, induces p53- independent lapoptosis in human osteosarcoma cells. Cancer Res 1995;55:486–489. 28. Danen-Van Oorschot AA, Zhang YH, Leliveld JL, et al. Importance of nuclear localization of VP3 for tumor-specific induction of apoptosis. J Biol Chem 2003;278:27729–27736. 29. Maddika S, Mendoza FJ, Hauff K, et al. Cancer-selective therapy of the future. Apoptin and its mechanism of action. Cancer Biol Ther 2006;5:10–19. 30. Poon IK, Oro C, Dias MM, et al. A tumor specific nuclear targeting signal within chicken anemia virus VP3/apoptin. J Virol 2005;79:1339–1341. 31. Poon IK, Oro C, Dias MM, et al. Apoptin nuclear accumulation is modulated by a CRM1-recognized nuclear export signal that is active in normal but not in tumor cells. Cancer Res 2005;65:7059–7064. 32. Heilman DW, Teodoro JG, Green MR. Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies. J Virol 2006;80:7535–7545. 33. Dorn CR, Taylor DO, Schneider R, et al. Survey of animal neoplasms in Alameda and Contra Costa counties, California. II. Cancer morbidity in dogs and cats from Alameda County. J Natl Cancer Inst 1968;40:307– 318. 34. Novosad CA. Principles of treatment for mammary gland tumors. Clin Tech Small Anim Pract 2003;18:107–109. 35. Dobson JM, Samuel S, Milstein H, et al. Canine neoplasia in the UK: estimates of incidence rates from a population of insured dogs. J Small Anim Pract 2002;43:240–246. 36. Gilbertson SR, Kurzman ID, Zachrau RE, et al. Canine mammary epithelial neoplasms: biologic implications of morphologic characteristics assessed in 232 dogs. Vet Pathol 1983;20:127–142. 37. Benjamin SA, Lee AC, Saunders WJ. Classification and behavior of canine mammary epithelial neoplasms based on life-span observations in beagles. Vet Pathol 1999;36:423– 436. 38. Osborn M. Intermediate filaments as histologic markers: an overview. J Invest Dermatol 1983;81(1 suppl):104s–109s. 39. Lee JL, Chang CJ, Wu SY, et al. Secreted frizzled-related protein 2 (SFRP2) is highly expressed in canine mammary gland tumors but not in normal mammary glands. Breast Cancer Res Treat 2004;84:139–149. 40. van der Eb MM, Pietersen AM, Speetjens FM, et al. Gene therapy with apoptin induces regression of xenografted human hepatomas. Cancer Gene Ther 2002;9:53–61. 41. Teodoro JG, Heilman DW, Parker AE, et al. The viral protein VP3 associates with the anaphase-promoting complex to induce G2/M arrest and apoptosis in the absence of p53. Genes Dev 2004;18:1952–1957. 42. Guelen L, Paterson H, Gaken J, et al. TAT-VP3 is efficiently delivered and induces apoptosis in cancer cells. Oncogene 2004;23:1153–1165. 43. Dow S, Elmslie R, Kurzman I, et al. Phase I study of liposome- DNA complexes encoding the interleukin-2 gene in dogs with osteosarcoma lung metastases. Hum Gene Ther 2005;16:937–946. 44. Thamm DH, Kurzman ID, Macewen EG, et al. Intralesional lipid-complexed cytokine/superantigen immunogene therapy for spontaneous canine tumors. Cancer Immunol Immunother 2003;52:473–480. 45. Otter WD, Cadee J, Gavhumende R, et al. Effective cancer therapy with a single injection of interleukin-2 at the site of the tumour. Cancer Immunol Immunother 1999;48:419–420. 46. Jacob JJ, Sparendam D, Den Otter W. Local interleukin 2 therapy is most effective against cancer when injected intratumourally. Cancer Immunol Immunother 2005;54:647–654. 47. Voutsas IF, Baxevanis CN, Gritzapis AD, et al. Synergy between interleukin-2 and prothymosin alpha for the increased generation of cytotoxic T lymphocytes against autologous human carcinomas. Cancer Immunol Immunother 2000;49:449–458. 48. Zhang G, Lee W, Holle L, et al. A novel design of targeted endocrine and cytokine therapy for breast cancer. Clin Cancer Res 2002;8:1196–1205. 49. Carsen WE, Parihar R, Lindemann MJ, et al. Interleukin-2 enhances the natural killer cell response to Herceptincoated Her2/neu-positive breast cancer cells. Eur J Immunol 2001;31:3016–3025. 50. Scholl SM, Balloul JM, Le Goc G, et al. Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J Immunother 2000;23:570–580. 51. Stewart AK, Lassam NJ, Quirt IC, et al. Adenovector-mediated gene delivery of interleukin-2 in metastatic breast cancer and melanoma: results of a phase 1 clinical trial. Gene Ther 1999;6:350–363. 52. Tonini G, Nunziata C, Prete SP, et al Adjuvant treatment of breast cancer: a pilot immunochemotherapy study with CMF, interleukin-2 and interferon alpha. Cancer Immunol Immunother 1998;47:157–166. 53. Den Otter W, Balemans L, Battermann JJ, et al. Local low-dose IL-2 therapy. Hepatogastroenterology 1999;1(46 suppl):1280–1286 54. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT, An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage, J. Neurosci. 2002;22:7006–7015. 55. Sherer TB, Kim JH, Betarbet R, Greenamyre JT, Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alphasynuclein aggregation, Exp.Neurol. 2003;179:9–16. 56. Ren Y, Feng J, Rotenone selectively kills serotonergic neurons through a microtubuledependent mechanism, J. Neurochem. 2007;103:303–311. 57. Li N., Ragheb K., Lawler G., Sturgis J., Rajwa B., Melendez J.A., Robinson J.P., Mitochndrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production, J. Biol. Chem. 2002;278:8516–8525. 58. Armstrong J.S., Hornung B., Lecane P., Jones D.P., Knox S.J., Rotenone-induced G2/M cell cycle arrest and apoptosis in a human B lymphoma cell line PW, Biochem. Biophys. Res. Commun. 2001;289:973–978. 59. Tada-Oikawa S., Hiraku Y., Kawanishi M., Kawanishi S., Mechanisms of generation of hydrogen peroxide and change of mitochondrial membrane potential during rotenoneinduced apoptosis, Life Sci. 2003;73:3277–3288. 60. Chung W.G., Miranda C.L., Maier C.S., Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells, Brain Res. 2007;1176:133– 142. 61. Ling Y.H., Liebes L., Zou Y., Perez-Soler R., Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells, J. Biol. Chem. 2003;278:33714–33723. 62. Tanaka T., Kohno H., Sakata K., Yamada Y., Hirose Y., Sugie S., Mori H., Modifying effects of dietary capsaicin and rotenone on 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis, Carcinogenesis 2002;23:1361–1367. 63. Kuo S.H., Hong C.Y., Lin S.K., Lee J.J., Chiang C.P., Kuo M.Y., Establishment and characterization of a tumorgenic cell line from areca quid and tobacco smakeassociated buccal carcinoma, Oral Oncol. 2007;43:639–647. 64. Shimizu S., Eguchi Y., Kamiike W., Waguri S., Uchiyama Y., Matsuda H., Tsujimoto Y., Retardation of chemical hypoxia-induced necrotic cell death by Bcl-2 and ICE inhibitors: possible involvement of common mediators in apoptotic and necrotic signal transductions, Oncogene 1996;12:2045–2050. 65. Yuki K., Miyauchi T., Kakinuma Y., Murakoshi N., Suzuki T., Hayashi J., Goto K., Yamaguchi I., Mitochondrial dysfunction increases expression of endothelin-1 and induces apoptosis through caspase-3 activation in rat cardiomyocytes in vitro, J. Cardiovasc. Pharmacol. 2000;36:S205–S208. 66. Kovar J., Valenta T., Stybrova H., Differing sensitivity of tumor cells to apoptosis induced by iron deprivation in vitro, In Vitro Cell. Dev. Biol. Anim. 37(2001) 450–458. 67. Oberley. TD, Oberley LW, Antioxidant enzyme levels in cancer, Histol. Histopathol. 1997;12:525–535. 68. Toyokuni S., Okamoto K., Yodoi J., Hiai H., Hypothesis: persistent oxidative stress in cancer, FEBS Lett. 1995;358:1–3. 69. Barrientos A., Moraes C.T., Titrating the effects of mitochondrial complex I impairment in the cell physiology, J. Biol. Chem. 1999;274:16188–16197. 70. Marshall L.E., Himes R.H., Rotenone inhibition of tubulin self-assembly, Biochim. Biophys. Acta 1978;543: 590–594. 71. Brinkley B.R., Barham S.S., Barranco S.C., Fuller G.M., Rotenone inhibition of spindle microtubule assembly in mammalian cells, Exp. Cell Res. 85 (1974)41–46. 72. Taylor W.R., Stark G.R., Regulation of the G2/M transition by p53, Oncogene 2001;20:1803–1815. 73. Boussif O, Lezoualc’h F, Zanta MA, et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci U S A 1995;92:7297–7301. 74. Leonetti JP, Degols G, Lebleu B. Biological activity of oligonucleotide-poly(L-lysine) conjugates: mechanism of cell uptake. Bioconjug Chem 1990;1:149–153. 75. Nakano K, Vousden KH. PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001;7:683–694. 76. Yu J, Zhang L, Hwang PM, et al. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 2001;7:673–682. 77. Han J, Flemington C, Houghton AB, et al. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci U S A 2001;98:11318–11323. 78. Erlacher M, Michalak EM, Kelly PN, et al. BH3-only proteins Puma and Bim are ratelimiting for gamma-radiation- and glucocorticoid- induced apoptosis of lymphoid cells in vivo. Blood 2005;106:4131–4138. 79. Ito H, Kanzawa T, Miyoshi T, et al. Therapeutic efficacy of PUMA for malignant glioma cells regardless of p53 status. Hum Gene Ther 2005;16:685–698. 80. Wang H, Qian H, Yu J, et al. Administration of PUMA adenovirus increases the sensitivity of esophageal cancer cells to anticancer drugs. Cancer Biol Ther 2006;5:380–385. 81. Sun Q, Sakaida T, Yue W, et al. Chemosensitization of head and neck cancer cells by PUMA. Mol Cancer Ther 2007;6:3180–3188. 82. Wang P, Yu J, Zhang L. The nuclear function of p53 is required for PUMA-mediated apoptosis induced by DNA damage. Proc Natl Acad Sci U S A 2007;104:4054–4059. 83. Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release 1999;60:149–160. 84. Vernejoul F, Faure P, Benali N, et al. Antitumor effect of in vivo somatostatin receptor subtype 2 gene transfer in primary and metastatic pancreatic cancer models. Cancer Res 2002;62:6124–6131. 85. Lee CH, Ni YH, Chen CC, et al. Synergistic effect of polyethylenimine and cationic liposomes in nucleic acid delivery to human cancer cells. Biochim Biophys Acta 2003;1611:55–62. 86. Poulain L, Ziller C, Muller CD, et al. Ovarian carcinoma cells are effectively transfected by polyethylenimine (PEI) derivatives. Cancer Gene Ther 2000;7:644–652. 87. Morimoto K, Nishikawa M, Kawakami S, et al. Molecular weightdependent gene transfection activity of unmodified and galactosylated polyethyleneimine on hepatoma cells and mouse liver. Mol Ther 2003;7:254–261. 88. Dolivet G, Merlin JL, Barberi-Heyob M, et al. In vivo growth inhibitory effect of iterative wild-type p53 gene transfer in human head and neck carcinoma xenografts using glucosylated polyethylenimine nonviral vector. Cancer Gene Ther 2002;9:708–714. 89. Chen L, Jiang J, Cheng C, et al. P53 dependent and independent apoptosis induced by lidamycin in human colorectal cancer cells. Cancer Biol Ther 2007;6:965–973. 90. Wu Y, Xing D, Liu L, et al. Regulation of Bax activation and apoptotic response to UV irradiation by p53 transcription-dependent and -independent pathways. Cancer Lett 2008;271: 231–239. 91. Yamaguchi H, Chen J, Bhalla K, et al. Regulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription-dependent and -independent pathways. J Biol Chem 2004;279:39431–39437. 92. Yu J, Wang Z, Kinzler KW, et al. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A 2003;100:1931–1936. 93. Alves NL, Derks IA, Berk E, et al. The Noxa/Mcl-1 axis regulates susceptibility to apoptosis under glucose limitation in dividing T cells. Immunity 2006;24:703–716. 94. Yee KS, Wilkinson S, James J, et al. PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 2009;16:1135–1145. 95. Li J, Lee B, Lee AS. Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem 2006;281:7260–7270. 96. Kamesaki H. Mechanisms involved in chemotherapy-induced apoptosis and their implications in cancer chemotherapy. Int J Hematol 1998;68:29–43. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25963 | - |
| dc.description.abstract | 摘要
細胞凋亡是近來受到腫瘤醫師及腫瘤生物學家青睞的重要機制,正常組織及腫瘤組織間的複雜差異,是主要決定腫瘤細胞死亡及病人存活的關鍵,我們連續的檢驗在三種不同情況下促成腫瘤細胞凋亡的機轉以期能夠延長病人的存活時間並保留生活品質。 首先是以雞貧血病毒中之VP3基因,藉由病毒或轉殖載體之攜帶而能成功地在犬隻乳腺腫瘤細胞上表現細胞凋亡之早期變化。並且在犬乳腺腫瘤細胞之細胞凋亡是以caspase-9之路徑進行。 其次,針對Caspase及其上游調控因子在以毒魚藤所引發之細胞毒性中所代表之角色加以探討。毒魚藤能夠顯著的抑制口腔腫瘤細胞之增殖然而對於正常口腔黏膜細胞則不見此特性。流式細胞儀檢驗下經毒魚藤處理之細胞核酸分析多數呈現于G2/M休止。西方墨點法分析後則顯現為Caspase八及九之路徑則與前項研究有所不同。P53蛋白質與下游之細胞凋零分子Bax則在毒魚藤處理後表現增加。此研究證明Caspase及其上游調控因子都與毒與籐細胞毒性有顯著之相關。 第三則檢驗在人類口腔腫瘤細胞以PEI媒介之PUMA基因轉植治療之功效。PUMA是屬於p53過度表現或其它刺激因子調控之細胞凋零現象之調控因子。PUMA對多數細胞凋零刺激訊號都是細胞死亡之調控因子,顯示PUMA屬於腫瘤抑制因子。外源性之PUMA表現於細胞中可造成cytochrome c釋放、Caspase三及九之活化、PARP之裂解之細胞凋零現象。以外源性之PEI/PUMA基因轉殖於異種移植腫瘤活體模式之基因治療可以達到約百分之六十之腫瘤消退率。更進一步,我們利用PEI媒介之PUMA基因治療能夠延長異種移植口腔腫瘤動物之存活期。結論:以PEI媒介之PUMA基因治療可以為各種腫瘤基因治療之有效模式。 | zh_TW |
| dc.description.abstract | Abstract
Apoptosis has always been an attractive mechanism that fascinates oncologists and cancer biologists in hoping to utilize it in cancer therapy. The different mechanisms involving the life and death for normal and cancer cells are intricate yet can directly impact on cancer therapy efficacy and patient survival. In this dissertation, we have consecutively exam three scenarios that ultimately cause cancer cell death and prolong patient survival. First, by using expression vectors or lentiviral vectors encoding VP3 gene from Taiwan chicken anemia virus we successfully delivered and induced canine mammary gland cells undergo pro-apoptotic changes. The change in canine mammary tumor cells was associated with caspase-9¬– but not caspase-8– mediated apoptotic pathways. Second, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in cells after treatment with rotenone. We have demonstrated significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity. Third, we examined the efficacy of targeted PUMA gene therapy in human oral cancer (SAS) cells using polyethylenimine (PEI)-mediated transfection for gene delivery. PUMA is a p53 up-regulated modulator of apoptosis that is induced by p53 tumor suppressor and other apoptotic stimuli. It was found to be a principal mediator of cell death in response to diverse apoptotic signals, implicating PUMA as a likely tumor suppressor. Exogenous expression of PUMA in SAS cells resulted in apoptosis with cytochrome c release, activation of caspase-3 and -9, and cleavage of PARP. Gene delivery of PEI/PUMA in SAS xenografts induced apoptosis and resulted in significant reductions (~60%) of tumor growth in vivo. Furthermore, we have shown that PEI-mediated PUMA gene therapy prolonged survival of animals with orthotopic SAS oral cancers. Conclusions. Taken together, these results indicated that PUMA gene therapy via PEI delivery could be a promising method for the treatment of oral squamous cell carcinoma. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:57:40Z (GMT). No. of bitstreams: 1 ntu-100-D91629008-1.pdf: 5934943 bytes, checksum: 8b2354f53a17b2a9b95dc0809ca500c8 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Table of Contents
口試委員會審定書 ii Title iii Acknowledgement iv 摘要 v Abstract vii Chapter I EFFECT OF THE VP3 GENE OF CHICKEN ANEMIA VIRUS ON CANINE MAMMARY TUMOR CELLS……………………………………………………………………………………………………………………………….1 Abstract 2 Abbreviations 3 Introduction 4 Materials and Methods 7 Results 16 FIGURE 1-1 22 FIGURE 1-2 24 FIGURE 1-3 25 FIGURE 1-4 26 FIGURE 1-5 28 FIGURE 1-6 29 FIGURE 1-7 31 FIGURE 1-8 32 Discussion 33 Abbreviations 39 Chapter II ESSENTIAL ROLES OF CASPASES AND THEIR UPSTREAM REGULATORS IN ROTENONE-INDUCED APOPTOSIS 40 Abstract 41 Introduction 42 Materials and methods 43 Results 48 TABLE 2-1 51 FIGURE 2-1 52 FIGURE 2-2 54 FIGURE 2-3 55 FIGURE 2-4 56 Discussion 58 Chapter III POLYETHYLENEIMINE-MEDIATE PUMA GENE DELIVERY TO ORTHOTOPIC ORAL CANCER: SUPPRESSION OF TUMOR GROWTH THROUGH APOPTOSIS INDUCTION IN SITU AND PROLONGED SURVIVAL 62 Abstract 63 Abbreviations 64 Introduction 65 Materials and Methods 67 RESULTS 71 FIGURE 3-1 75 FIGURE 3-2 76 FIGURE 3-3 78 FIGURE 3-4 79 FIGURE 3-5 81 DISCUSSION 83 Chapter IV Conclusion and Future Perspective 86 References 92 | |
| dc.language.iso | zh-TW | |
| dc.title | 以引致細胞凋亡機制治療惡性腫瘤之研究 | zh_TW |
| dc.title | Development Of Apoptosis Induction-Based Therapeutic Approach To Treat Malignant Tumors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 蕭宏昇(Michael Hsiao) | |
| dc.contributor.oralexamcommittee | 劉振軒(Chen-Hsuen Liu),劉涓(Juan Liu),吳駿翃(Alexander Wu) | |
| dc.subject.keyword | 細胞凋零,基因治療,惡性腫瘤, | zh_TW |
| dc.subject.keyword | Apoptosis,gene therapy,malignant tumor, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-22 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 5.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
