請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25951完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲(Jui-Che Tsai) | |
| dc.contributor.author | Ching-kai Shen | en |
| dc.contributor.author | 沈靖凱 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:57:29Z | - |
| dc.date.copyright | 2009-07-21 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-16 | |
| dc.identifier.citation | [1]http://www.playrobot.com/gyro%20sensor%20control.htm
[2]http://en.wikipedia.org/wiki/Gyroscope [3]http://en.wikipedia.org/wiki/Ring_laser_gyroscope [4]Richard P. Feynman, “There’s plenty of room at the bottom,” Journal of Microelectromechanical Systems, vol. 1, No. 1, Mar 1992. [5]http://www.leanandglide.com/INDEX_files/HowSegwaysWork.htm [6]http://kotaku.com/5025650/how-exactly-does-the-wiis-motionplus-work [7]Nadim Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, INC. Norwood, MA, 2000. [8]http://www.memscap.com [9]http://www.fzk.de/fzk/idcplg?IdcService=FZK&node=0892〈=en [10]Q. Shi, S. Wang, A. Qiu ,Y. Xu and X. Ji, “Design principle of suspension of MEMS gyroscope,” Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 2006. [11]Chihwan Jeong, Seonho Seok, Byeungleul Lee, Hyeonched Kim and Kukjin Chun, “A study on resonant frequency and Q factor tunings for MEMS vibratory gyroscopes,” J. Micromech. Microeng., Vol. 14, No.11, pp. 1530-1536, August 2004. [12]E. M. Yeatman, “Energy harvesting from motion using rotating and gyroscopic proof masses,” J. Mechanical Engineering Science, Vol. 222, Part C, pp. 27-36, August 2007. [13]S. Mohite, N. Patil and R. Pratap, “Design, modelling and simulation of vibratory micromachined gyroscopes,” Journal of Physics: Conference Series, Vol. 34, pp. 757-763, May 2006. [14]Abdelhameed Sharafe, Sherif Sedky, S. E.-D. Habib, “Complete analysis of a novel fully symmetric decoupled micromachined gyroscope,” International Conference on MEMS, NANO and Smart Systems, pp. 35-40, 2006 [15]Abdelhameed Sharafe, Sherif Sedky, S. E.-D. Habib, “Design and Simulation of a New Decoupled Micromachined Gyroscope,” Journal of Physics: Conference Series, Vol. 34, pp. 464-469, May 2006. [16]A. Kulygin, U. Schmid and H. Seidel, “Investigation on the pressure-dependent performance of a surface micromachined gyroscope,” TRANSDUCERS & EUROSENSORS, pp. 1183-1186, June 2007. [17]S. Sassen et al., “Tuning fork silicon angular rate sensor with enhanced performance for automotive applications,” Sensors and Actuators, Vol. 83, pp. 80-84, December 2000. [18]F. Ayazi, and K. Najafi, “A HARPSS polysilicon vibrating ring gyroscope,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, Vol. 10, No. 2, June 2001. [19]Cenk Acar and Andrei M. Shkel, “Structurally decoupled micromachined gyroscopes with post-release capacitance enhancement,” J. Micromech. Microeng., Vol. 15, No. 5 , pp. 1092-1101, May 2005. [20]D. H. Tsai and Weileun Fang, “Design and simulation of a dual-axis sensing decoupled vibratory wheel gyroscope,” Sensors and Actuators A: Physical, Vol. 126, Issue 1, pp. 33-40, January 2006. [21]Yoichi Mochida et al., “Precise MEMS gyroscope with ladder structure,” TRANSDUCERS & EUROSENSORS, pp. 2529-2532, June 2007. [22]W. Geiger et al., “Decoupled microgyros and the design principle DAVED,” Proc. of MEMS 2001, pp. 170-173, January 2001. [23]Cenk Acar and Andrei M. Shkel, “An approach for increasing drive-mode bandwidth of MEMS vibratory gyroscopes,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, Vol. 14, No. 3, June 2005. [24]Chia-Ou Chang, Chan-Shin Chou, Wei-Fan Lai, “Vibration analysis of a three-dimensional ring gyroscope,” Bulletin of the College of Engineering, N.T.U., No. 91, pp. 65-73, June 2004. [25]S. R. Yang, Y. Chiu, C. K. Chiu, and J. J. Tsai, “Comparison of control systems for micro vibratory ring gyroscope,” the Asia-Pacific Conference of Transducers and Micro/Nano Technologies (APCOT), June 2008. [26]Kaicheng Chang and Morris P. F. Liang, “Design and testing of dual-axial gyroscope,” 2005 IEEE International Conference on Robotics and Biomimetics, pp. 774-777, 2005. [27]N. C. Tsai, C. Y. Sue, and C. C. Lin, “Design and fabrication of a novel tri-axis micro-gyroscope,” Proc. of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems, pp. 457-461, January 2008. [28]N. C. Tsai, C. Y. Sue, and C. C. Lin, “Design and dynamics of an innovative micro gyroscope against coupling effects,” Microsyst Technol, Vol. 14, pp. 295-306, January 2008. [29]C. P. Hsu, Y. D. Lau, D. H. Tsai, M. C. Yip, and W. Fang, “Decoupled z-axis microgyroscope using oblique comb for frequency tuning,” the Asia-Pacific Conference of Transducers and Micro/Nano Technologies (APCOT), June 2008. [30]周傳心等人,壓電驅動與感測環型諧振式陀螺儀研究,行政院國家科學委員會專題研究計畫,民國93年08月01日至94年07月31日。 [31]周傳心等人,環型諧振式陀螺儀誤差分析和振動控制研究,行政院國家科學委員會補助專題研究計畫,民國94年08月01日至95年07月31日。 [32]周傳心等人,振動陀螺儀性能提升研究,行政院國家科學委員會補助專題研究計畫,民國96年08月01日至97年09月30日。 [33]張家歐等人,微型三軸振動式陀螺儀的理論分析與研製,行政院國家科學委員會專題研究計畫,民國93年08月01日至94年07月31日。 [34]張家歐等人,微型矽材之諧振式調質薄膜陀螺儀的動力學分析與實驗測試(1/2),行政院國家科學委員會專題研究計畫,民國91年08月01日至92年07月31日。 [35]張家歐等人,微型矽材之諧振式調質薄膜陀螺儀的動力學分析與實驗測試(2/2),行政院國家科學委員會專題研究計畫,民國92年08月01日至93年07月31日。 [36]成維華等人,環形平面加速規與陀螺儀混成式微感測器之研究與實作,行政院國家科學委員會補助專題研究計畫,民國90年8月1日至91年7月31日。 [37]D. V. Dao et al, “A fully integrated MEMS-based convective 3-DOF gyroscope,” TRANSDUCERS & EUROSENSORS, pp. 1211-1214, June 2007. [38]Adam R. Schofield et al., “Anti-phase driven rate gyroscope with multi-degree of freedom sense mode,” TRANSDUCERS & EUROSENSORS, pp. 1199-1202, June 2007. [39]K. Azgin, Y. Temiz, and T. Akin, “An SOI-MEMS tuning fork gyroscope with linearly coupled drive mechanism,” Proc. of MEMS 2007, pp. 607-610, January 2007. [40]Houri Johari and Farrokh Ayazi, “High-frequency capacitive disk gyroscopes in (100) and (111) silicon,” Proc. of MEMS 2007, pp. 47-50, January 2007. [41]Q. H. Liu and X. Z. Wu, “Design of a novel MEMS IDT dual axes surface acoustic wave gyroscope,” Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, January 2007. [42]X. S. Wu, W. Y. Chen, X. L. Zhao, and W. P. Zhang, “Development of a micromachined rotating gyroscope with electromagnetically levitated rotor,” J. Micromech. Microeng., Vol. 16, No.10, pp. 1993-1999, August 2006. [43]Damrongrit Piyabongkarn, Rajesh Rajamani, and Michael Greminger, “The development of a MEMS gyroscope for absolute angle measurement,” IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, Vol. 13, No. 2, March 2005. [44]Cenk Acar and Andrei M. Shkel, “Structural design and experimental characterization of torsional micromachined gyroscopes with non-resonant drive mode” J. Micromech. Microeng., Vol. 14, No. 1 , pp. 15-25, January 2004. [45]Clark T.-C. Nguyen, “MEMS Technology for Timing and Frequency Control,” IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, Vol. 54, No. 2, February 2007. [46]Toshiyuki Tsuchiya and Hirofumi Funabashi, “A z-axis differential capacitive SOI accelerometer with vertical comb electrodes,” Sensors and Actuators A: Physical, Vol. 116, Issue 3, pp. 378-383, October 2004. [47]Stephen D. Senturia, Microsystem Design, Kluwer Academic Publishers. USA, 2001. [48]K. Wang and Clark T.-C. Nguyen, “High-Order Medium Frequency Micromechanical Electronic Filters,” JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, Vol. 8, No. 4, December 1999. [49]http://cbl.be.cycu.edu.tw/fem_introduce.htm [50]電子書,Introducing COSMOSWorks,SolidWorks Corp.,2003。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25951 | - |
| dc.description.abstract | 隨著自動化科技與導航技術的進步,陀螺儀在體積小、價格低、系統整合度高的需求下,應用微機電製程製作的微型化振動陀螺儀開啟了新式陀螺儀的發展。利用微機電陀螺儀的定位功能,在民生工業以及消費性電子商品上有許多應用,而在學術上的研究亦有許多突破與創新。
微機電振動型陀螺儀的主要原理為:利用轉動發生時造成垂直於驅動端振動方向的科氏力致使感測端產生振動,藉由讀取感測端訊號進行角速度的量測。為提高靈敏度,在結構上採用去耦合型態之概念,而驅動端與感測端共振頻率的匹配、品質因子皆為重要的考量因素。 本論文之研究目標為在不犧牲Q值的情況下,使驅動端與感測端具有頻寬放大的功能,以提高元件之靈敏度。文中將提出具有去耦合結構的兩種微機電振動型陀螺儀的設計:第一種為環形振盪結構,利用四個質量大小不同的質量塊使驅動端頻寬獲得等效放大;第二種為交互垂直振盪結構,利用機械微懸臂樑的耦合方式,隨著頻率增加,使驅動端與感測端因相鄰振動模態的譜線疊加而達到頻寬放大的效果。 文中將進一步利用模擬軟體進行上述兩種結構之共振頻率以及線性動態的模擬分析,觀察其頻譜響應之結果圖型,進行頻寬放大,提高匹配程度功能的驗證。透過L形振盪塊共振頻率實驗的初步測試,頻譜響應與模擬結果可相呼應,也證實所設計的元件確實有頻寬放大的效果,匹配程度得以提高,目標功能初步達成! | zh_TW |
| dc.description.abstract | Due to the progresses of the automation and the navigation technology, applying MEMS manufacturing process to produce miniaturized vibratory gyroscope begins the development of novel gyroscopes with the requirement of small volume, low prices, and high compatibility to systems. There are many applications in commercial electronic commodities and many breakthroughs in academic studies by the positioning function of gyroscopes.
The main mechanism of the vibratory MEMS gyroscopes is that when rotation occurs, the Coriolis force which is vertical to the driving vibratory direction makes the sensing mass vibrate. Thus, we can detect the angular velocity by reading the output signal from sense. We adapt the concept of the decoupled structures for raising sensitivity. In addition, the matching between drive and sense, and the quality factor (Q) are both important considerations. The target of this study is to increase the bandwidths of the frequency responses of drive and/or sense to improve the sensitivity of the designed devices without sacrificing Q factors. Two kinds of designs of MEMS gyroscopes with decoupled structures will be presented in this thesis. The first is circularly vibratory structure which has four different-weighted masses to equivalently increase the bandwidth of driving frequency response. The second is perpendicularly vibratory structures which, with gradually increasing frequency, make the spectrums of adjacent vibration modes of drive or sense be broadened via the coupling of micro-mechanical elastic beam. We use simulation software to analyze the natural resonant frequencies and the dynamic responses of these two kinds of structures, and then observe the resultant diagrams to verify the bandwidths enlargement function. Through the initial experiments of the resonant frequency of L-shape’s vibratory mass, the consequences can correspond to the simulation results. It is proved that the designed devices indeed have the bandwidth-magnified effect, and lead to the rise of matching between drive and sense. Therefore, the goal is initially achieved! | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:57:29Z (GMT). No. of bitstreams: 1 ntu-98-R96941043-1.pdf: 4388984 bytes, checksum: 3a29251284bdbb3595ba8937c700a070 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝……………………………………………………………………………………..i
中文摘要……………………………………………………………………………….ii 英文摘要………………………………………………………………………………iii 圖目錄…………………………………………………………………………………vii 表目錄…………………………………………………………………………………..x 第一章 緒論…………………………………………………………………………...1 1-1 研究背景與動機……………………………………………………………...1 1-2 文獻回顧……………………………………………………………………...4 1-2.1微機電技術……………………………………………………………..4 1-2.2微機電陀螺儀之發展與應用…………………………………………..6 1-3 研究目的…………………………………………………………………….15 1-4 論文架構…………………………………………………………………….17 第二章 微機電陀螺儀之工作原理………………………………………………….18 2-1 靜電驅動方式及原理……………………………………………………….18 2-1.1平行板電容驅動………………………………………………………19 2-1.2梳狀電容結構…………………………………………………………21 2-2 感測方式及原理…………………………………………………………….24 2-2.1重疊面積變化之電容感測……………………………………………24 2-2.2間距變化之電容感測…………………………………………………25 2-3 微機電陀螺儀動態分析…………………………………………………….28 2-3.1運動方程式推導………………………………………………………28 2-3.2共振頻率分析…………………………………………………………32 第三章 微機電陀螺儀之設計……………………………………………………….34 3-1 去耦合型態簡介…………………………………………………………….34 3-2 多模態驅動端與感測端…………………………………………………….37 3-2.1應用多個質量塊………………………………………………………37 3-2.2應用彈性微懸臂樑耦合結構…………………………………………39 3-3 目標元件結構設計………………………………………………………….41 3-3.1環形振盪結構…………………………………………………………42 3-3.2交互垂直振盪結構……………………………………………………44 第四章 模擬分析…………………………………………………………………….48 4-1 有限元素法………………………………………………………………….48 4-2 共振頻率模擬結果………………………………………………………….50 4-2.1環形振盪結構…………………………………………………………50 4-2.2交互垂直振盪結構……………………………………………………53 第五章 實驗過程與結果…………………………………………………………….59 5-1 實驗架構與步驟…………………………………………………………….61 5-2 元件振動觀察……………………………………………………………….64 5-3 頻譜響應…………………………………………………………………….68 第六章 結論與未來工作…………………………………………………………….71 參考文獻……………………………………………………………………………….73 | |
| dc.language.iso | zh-TW | |
| dc.title | 可寬頻操作且具備高感測靈敏度之微機電去耦合陀螺儀的設計與製作 | zh_TW |
| dc.title | Design and Fabrication of MEMS Decoupled Gyroscopes with Wide Operation Bandwidths and High Detection Sensitivity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉(Chia-Wei Sun),呂志偉(Chih-Wei Lu) | |
| dc.subject.keyword | 微機電陀螺儀,共振頻率,去耦合結構,環形振盪結構,交互垂直振盪結構,頻譜響應, | zh_TW |
| dc.subject.keyword | MEMS gyroscope,resonant frequency,decoupled structure,circularly vibratory structure,reciprocally vibratory structure,frequency response, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
