請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2593
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 施養信(Yang-Hsin Shih) | |
dc.contributor.author | Chin-Shun Kuo | en |
dc.contributor.author | 郭進順 | zh_TW |
dc.date.accessioned | 2021-05-13T06:42:42Z | - |
dc.date.available | 2020-02-15 | |
dc.date.available | 2021-05-13T06:42:42Z | - |
dc.date.copyright | 2017-02-17 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-02-14 | |
dc.identifier.citation | ACC (American Chemistry Council). Determination of effects on the growth of the common mussel Mytilus edulis. 2005.
ACC-BFRIP (American Chemistry Council Brominated Flame Retardant Industry Panel). Tetrabromobisphenol A: A toxicity test to determine the effects of the test substance on seedling emergence of six species of plants. 2002. ACC-BFRIP (American Chemistry Council - Brominated Flame Retardants Industry Panel). Tetrabromobisphenol-A (TBBPA): A prolonged sediment toxicity test with Hyalella azteca using spiked sediment. 2006. Bao, Y.; Niu, J. Photochemical transformation of tetrabromobisphenol A under simulated sunlight irradiation: kinetics, mechanism and influencing factors. Chemosphere 2015, 134, 550−556. Bokare, A.D.; Chikate, R.C.; Rode, C.V.; Paknikar, K.M. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl. Catal. B: Environ. 2008, 79, 270-278. Brezonik, P.L. (1994). Chemical kinetics and process dynamics in aquatic systems. Lewis Publishers. Brown, D.D.; Wang, Z.; Furlow, J.D.; Kanamori, A.; Schawartzman, R.A.; FRemo B.F.; Pinder, A. The thyroid hormone-induced tail resorption program during xenopus laevis metamorphosis. Developmental Biology 1996, 93, 1924-1929. BSEF (Bromine Science and Environmental Forum). Major brominated flame retardants volume estimates. Total Market Demand by Region in 2001. 2001, available at: http://www.bsef-site.com/docs/BFR_vols_2001.doc BSEF (Bromine Science and Environmental Forum). 2006, available at: http://www.bsef.com/bromine/faq/index.php Cariou, R.; Antignac, J. P.; Zalko, D.; Berrebi, A.; Cravedi, J. P.; Maume, D.; Marchand, P.;Monteau, F.; Riu, A.; Andre, F.; Le Bizec, B. Exposure assessment of French women and their newborns to tetrabromobisphenol-A: occurrence measure-ments in maternal adipose tissue, serum, breast milk and cord serum. Chemosphere 2008, 73, 1036-1041. Chamarro, E.; Marco, A.; Esplugas, S. Use of Fenton reagent to improve organic chemical biodegradability. Water Res. 2001, 35 (4), 1047-51. Chan, W.K.; Chan, K.M. Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo–larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquat. Toxicol. 2012, 108, 106–111 Chang, B.V.; Yuan, S.Y.; Ren, Y.L. Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment. Chemosphere 2012, 87, 535-541. Chen, J.L.; Al-Abed, S.R.; Ryan, J.A.; Li, Z.B. Effects of pH on dechlorination of trichloroethylene by zero-valent iron. J. Hazard. Mater. 2001, 83, 243-254 Chatterjeea, S.; Limb, S.R.; Woo, S.H. Removal of Reactive Black 5 by zero-valent iron modified with various surfactants. Chem. Eng. J. 2010,160 (1), 27-32. Covaci, A.; Voorspoels, S.; Abdallah, M.A.; Geens, T.; Harrad, S.; Law, R.J. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J. Chromatogr. A 2009, 1216, 346–363. Cwiertny, D.M.; Bransfield, S.J.; Roberts, A.L. Influence of the oxidizing species on the reactivity of iron-based Bimetallic reductants. Environ. Sci. Technol. 2007, 15, 41 (10), 3734-3740. Das, S.; Hendry, M. J. Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chem. Geol. 2011, 290 (3–4), 24, 101–108. Darnerud, P. O. Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int. 2003, 29, 841–853. De Wit, C.A.; Herzke, D.; Vorkamp, K. Brominated flame retardants in the Arctic environment - trends and new candidates. Sci Total Environ. 2010, 408, 2885–2918. Decherf, S.; Seugnet, I.; Fini, J.B.; Clerget-Froidevaux, M.S.; Demeneix, B.A. Disruption of thyroid hormone-dependent hypothalamic set-points by environmental contaminants. Mol. Cell. Endocrinol. 2010, 323 (2), 172-182. Doong, R.A.; Saha, S.; Leeb, C.H.; Lin, H.P. Mesoporous silica supported bimetallic Pd/Fe for enhanced dechlorination of tetrachloroethylene. RSC Adv. 2015, 5, 90797–90805 EC (European Commission). Risk Assessment of 2,2',6,6-Tetrabromo-4,4'-Isopropyl- idene Diphenol (Tetrabromobisphenol-A): CAS Number: 79-94-7; EINECS Number: 201-236-9; Final Environmental Rar of February 2008. R402_0802_ env. Rapporteur: United Kingdom. 2008. http://echa.europa.eu/documents/ 10162/17c7379e-f47b-4a76-aa43-060da5830c07. ECB (European Chemicals Bureau). European Union Risk Assessment Report - 2,2’,6,6’-tetrabromo-4,4’-isopropylidenediphenol, (tetrabromobisphenol-A or TBBP-A) (CAS No: 79-94-7) Part II – human health. European Commission – Joint Research Centre, Institute for Health and Consumer Protection. Luxembourg: Office for Official Publications of the European Communities (2006) OEINECS No: 201-236-9. Series: 4th Priority List Volume: 63. EFSA (European Food Safety Authority). EFSA panel on contaminants in the food chain (CONTAM): scientific opinion on Tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA Journal 2011, 9 (12), 2477. Elliott, D.W.; Zhang, W.X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ.Sci.Technol. 2001, 35, 4922-4926. Fang Y.; Al-Abed S.R. Correlation of 2-chlorobiphenyl dechlorination by Fe/Pd with iron corrosion at different pH. Environ. Sci. Technol. 2008, 15, 42 (18), 6942-6948. Fang, Z.; Qiu, X.; Chen, J. Qiu, X. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles: influencing factors, kinetics, and mechanism. J. Hazard. Mater. 2011, 185 (2-3), 958-969. Feng, J.; Lim, T.T. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 2005, 59 (9), 1267–1277. GC (Government of Canada). Screening Assessment Report on Phenol, 4,4'-(1-methylethylidene)bis[2,6-dibromo-, Ethanol, 2,2'-[(1-methylethy-lidene)bis-[(2,6-dibromo-4,1-phenylene)oxy]]bis, Benzene, 1,1'-(1-methylethylidene)bis-[3,5-dibromo-4-(2-propenyloxy)-. 2013. Available at: http://www.ec.gc.ca/ese-ees/BEE093E4-8387-4790-A9CD- C753B3E5BFAD/FSAR_TBBPA_EN.pdf George, K. W.; Häggblom, M. M. Microbial o-methylation of the flame retardant tetrabromobisphenol-A. Environ. Sci. Technol. 2008, 42 (15), 5555–5561. GLCC (Great Lakes Chemical Corporation). The acute toxicity of FMBP4A (Tetrabromobisphenol a) to the bluegill sunfish, Lepomis macrochirus Rafinesque. 1978a. GLCC (Great Lakes Chemical Corporation). The acute toxicity of FMBP4A (Tetrabromobisphenol a) to the rainbow trout, Salmo gairdneri Richardson. 1978b. GLCC (Great Lakes Chemical Corporation). Acute toxicity of tetrabromobisphenol a to fathead minnow (Pimephales promelas) under flow-through conditions. 1988a. Gorga, M.; Martínez, E.; Ginebreda, A.; Eljarrat, E.; Barceló, D. Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain). Sci. Total Environ. 2013, 444,51-59. Graham, L.J.; Jovanovic, G. Dechlorination of p-chlorophenol on a Pd/Fe catalyst in amagetically stabilized fluidized bed; Implications for sludge and liquid remediation. Chem. Eng. Sci. 1999, 54 (15-16), 3085-3093. Halldin, K.; Berg, C.; Bergman, A.; Brandt, I.; Brunström, B. Distribution of bisphenol A and tetrabromobisphenol A in quail eggs, embryos and laying birds and studies on reproduction variables in adults following in ovo exposure. Arch Toxicol. 2001, 75 (10), 597-603. Han, S.K.; Bilski, P.; Karriker, B.; Sik, R.H.; Chignell, C.F. Oxidation of flame retardant tetrabromobisphenol A by singlet oxygen. Environ Sci Technol. 2008, 42 (1), 166-72. Hanada, H.; Katsu, K.; Kanno, T.; Sato, E.F.; Kashiwagi, A.; Sasaki, J.; Inoue, M.; Utsumi, K. Cyclosporin an inhibits thyroid hormone-induced shortening of the tadpole tail through membrane permeability transition. Comparative Biochemistry and Physiology. Part B. 2003, 135, 473-483. Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941-948. Harrad, S.; Abdallah, M.A.; Rose, N.L.; Turner, S.D.; Davidson, T.A. Current-use brominated flame retardants in water, sediment, and fish from English lakes. Environ. Sci. Technol. 2009, 43 (24), 9077-9083. He, M.J.; Luo, X.J.; Yu, L.H.; Wu, J.P.; Chen, S.J.; Mai, B.X. Diasteroisomer and enantiomer-specific profiles of hexabromocyclododecane and tetrabromo-bisphenol A in an aquatic environment in a highly industrialized area, South China: vertical profile, phase partition, and bioaccumulation. Environ. Pollut. 2013, 179, 105-110. Hendriks, H.S.; van Kleef, R. G. D. M.; van den Berg, M.; Westerink, R. H. S. Multiple novel modes of action involved in the in vitro neurotoxic effects of Tetrabromo-bisphenol-A. Toxicol. Sci. 2012, 128 (1), 235-246. Huang, C.C.; Lo, S.L.; and Lien, H.L. Vitamin B12-mediated hydrodechlorination of dichloromethane by bimetallic Cu/Al particles. Chem. Eng. J. 2015, 273, 413-420. Huang, Q.; Liub, W.; Peng, P.; Huang, W. Reductive debromination of tetrabromo-bisphenol A by Pd/Fe bimetallic catalysts. Chemosphere 2013, 92 (10), 1321–1327 Huang, D.Y.; Zhao, H.Q.; Liu, C.P.; Sun, C.X. Characteristics, sources, and transport of tetrabromobisphenol A and bisphenol A in soils from a typical e-waste recycling area in South China. Environ. Sci. Pol. Res. 2014, 21 (9), 5818–5826. Jiang, C.; Pang, S.; Ouyang, F.; Ma, J., Jiang, J. A new insight into Fenton and Fenton-like processes for water treatment. J. Hazard. Mater. 2010, 174 (1-3),813-817. Johnson-Restrepo, B.; Adams, D.H.; Kannan, K. Tetrabromobisphenol A (TBBPA) and hexabromocyclododecanes (HBCDs) in tissues of humans, dolphins, and sharks from the United States. Chemosphere 2008, 70 (11), 1935-1944. Kashiwagi, A.; Hanada, H.; Yabuki, M.; Kanno, T.; Ishisaka, R.; Sasaki, J.; Inoue, M.; Utsumi. K. Thyroxine enhancement and the role of reactive oxygen species in tadpole tail apoptosis. Free. Radic. Biol. Med. 1999, 26, 1001-1009. Kitamura, S.; Jinno, N.; Ohta, S.; Kuroki, H.; Fujimoto, N. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A. Biochem. Biophys. Res. Commun. 2002, 293 (1), 554-559. Koike, E.; Yanagisawa, R.; Takigami, H.; Takano, H. Brominated flame retardants stimulate mouse immune cells in vitro. J. Appl. Toxicol. 2013, 33 (12),1451-1459. Krueger, H. e. a.. Tetrabromobisphenol A: A prolonged sediment toxicity test with Lumbriculus Variegatus using spiked sediment with 2% total organic carbon. Wildlife International, Ltd. 2002a. Krueger, H. e. a. Tetrabromobisphenol A: A prolonged sediment toxicity test with Lumbriculus variegatus using spiked sediment with 5% total organic carbon Wildlife International, Ltd. 2002b. Li, Y.; Hsieh, W.P.; Mahmudov, R.; Weia, X.; Huang, C.P. Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater. J. Hazard. Mat. 2013, 244-245, 403-411. Li, Y.; Li, X.; Xiao, Y.; Wei, C.; Han, D.; Huang, W. Catalytic debromination of tetrabromobisphenol A by Ni/nZVI bimetallic particles. Chem. Eng. J. 2016, 284, 1242–1250 Li, F.; Wang, J.; Jiang, B.; Yang, X.; Nastold, P.; Kolvenbach, B.; Wang, L.; Ma, Y.; Corvini, P. F. X.; Ji, R. Fate of tetrabromobisphenol A (TBBPA) and formation of ester- and ether-linked bound residues in an oxic sandy soil. Environ. Sci. Technol. 2015, 49 (21), 12758−12765. Lien, H.L.; Zhang, W.X. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf. A Physicochem. Eng. Asp. 2011, 191, 97-105. Lien, H.L.; Zhang, W.X. Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Appl. Catal. B: Environ. 2007, 77, 110–116. Lin, K.; Ding, J.F.; Huang, X.W. Debromination of tetrabromobisphenol A by nanoscale zerovalent iron: kinetics, influencing factors, and pathways. Ind. Eng. Chem. Res., 2012, 51 (25), 8378–8385. Lin, K.; Liu, W.; Gan, J. Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: kinetics, products, and pathways. Environ. Sci. Technol. 2009, 43 (12), 4480−4486 Liu, G.B.; Zhao, H.Y.; Thiemann, T. Zn dust mediated reductive debromination of tetrabromobisphenol A (TBBPA). J. Hazard. Mat. 2009, 169, 1150–1153. Liu, J.; Wang, Y.; Jiang, B.; Wang, L.; Chen, J.; Guo, H.; Ji, R. Degradation, metabolism, and bound-residue formation and release of Tetrabromobisphenol A in soil during sequential anoxic-oxic incubation. Environ. Sci. Technol. 2013, 47 (15), 8348-8354. Liu, K.; Li, J.; Yan, S.; Zhang, W.; Li, Y.; Han, D. A review of status of tetrabromobisphenol A (TBBPA) in China. Chemosphere 2016, 148, 8-20. Lowry, G.V.; Johnson, K.M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 2004, 38, 5208–5216. Lucas, M.S.; Peres, J.A. Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments 2006, 71 (3), 236–244. Luo, S.; Yang, S.G.; Wang, X.D.; Sun, C. Reductive degradation of tetrabromo-bisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation. Chemosphere 2010, 79, 672. Luo, S.; Yang, S.G.; Wang, X.D.; Sun, C. Reductive degradation of tetrabromo-bisphenol A using iron–silver and iron–nickel bimetallic nanoparticles with microwave energy. Environ. Eng. Sci. 2012, 29, 453–460. Matheson, L.J.; Tratnyek, P.G. Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ. Sci. Technol. 1994, 28 (12), 2045–2053. Matsukami, H.; Tue, N.M.; Suzuki, G.; Someya, M.; Tuyen, L.H.; Viet, P.H.; Takahashi, S.; Tanabe, S.; Takigami, H. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs. Sci. Total Environ. 2015, 514, 492–499. McCormick J.M.; Paiva, M.S.; Häggblom, M.M.; Cooper, K.R.; White, L.A. Embryonic exposure to tetrabromobisphenol A and its metabolites, bisphenol A and tetrabromobisphenol A dimethyl ether disrupts normal zebrafish (Danio rerio) development and matrix metalloproteinase expression. Aquat. Toxicol. 2010, 100 (3), 255-262. Meerts, I.A.; van Zanden, J.J.; Luijks, E.A.; van Leeuwen-Bol, I.; Marsh, G.; Jakobsson, E.; Bergman, A.; Brouwer, A. Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol. Sci. 2000, 56 (1), 95-104. Moon, B.H.; Park, Y.B.; Park, K.H. Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination 2011, 268 (1-3), 249-252. Morris, S.; Allchin, C.R.; Zegers, B.N.; Haftka, J.J.; Boon, J.P.; Belpaire, C.; Leonards, P.E.; Van Leeuwen, S.P.; De Boer, J. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ. Sci. Technol. 2004, 38 (21), 5497-5504. Nakajima, A.; Saigusa, D.; Tetsu, N.; Yamakuni, T.; Tomioka, Y; Hishinuma, T. Neurobehavioral effects of tetrabromobisphenol A, a brominated flame retardant, in mice. Toxicol. Lett. 2009, 189, 78-83. Neyens, E.; Baeyens, J. A review of classic Fenton's peroxidation as an advanced oxidation technique. J. Hazard. Mater. 2003, 98, (1-3), 33-50. Ni, H.G.; Zeng, H. HBCD and TBBPA in particulate phase of indoor air in Shenzhen, China. Sci. Total Environ. 2013, 458-460, 15-19. Nollet, L. M. L. Analysis of endocrine disrupting compounds in food. Blackwell Publishing Ltd. 2011, 377-411. Ogunbayo, O. A.; Michelangeli, F. The widely utilized brominated flame retardant tetrabromobisphenol A (TBBPA) is a potent inhibitor of the SERCA Ca2+ pump. Biochem J. 2007, 408, 407–415. Oh, S. J.; Cook, D.C.; Townsend, H.E. Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact. 1998, 112 (1), 59–66. Osako, M.; Kim, Y.J.; Sakai, S. Leaching of brominated flame retardants in leachate from landfills in Japan. Chemosphere 2004, 57 (10), 1571-1579. Parshetti G.K.; Doong, R.A. Dechlorination of chlorinated hydrocarbons by bimetallic Ni/Fe immobilized on polyethylene glycol-grafted microfiltration membranes under anoxic conditions. Chemosphere 2012, 86 (4), 392-399. Pimentel, M.; Oturan, N.; Dezotti, M.; Oturan, M.A. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl. Catal. B: Environ. 2008, 83, 140–149. Pullen, S.; Boecker, R.; Tiegs, G. The flame retardants tetrabromobisphenol A and tetrabromobisphenol A-bisallylether suppress the induction of interleukin-2–receptor alpha chain (CD25) in murine splenocytes. Toxicology 2003, 184:11–22. Puls, R.W.; Paul, C.J.; Powell, R. M. The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test. Appl. Geochem. 1999, 14, 989-1000. Qu, R.; Feng, M.; Wang, X.; Huang, Q.; Lu, J.; Wang, L.; Wang, Z. Rapid removal of tetrabromobisphenol A by ozonation in water: oxidation products, reaction pathways and toxicity assessment. PLoS ONE 2015, 10 (10), 1-17. Reistad, T.; Mariussen, E.; Ring, A.; Fonnum, F. In vitro toxicity of tetrabromo-bisphenol-A on cerebellar granule cells: cell death, free radical formation, calcium influx and extracellular glutamate. Toxicol. Sci. 2007, 96 (2), 268-278. Ren, Y.L. Biodegradation of Tetrabromobisphenol A in river sediment. (Master's thesis, Soochow University, Taipei, Taiwan). 2010. Ronen, Z.; Abeliovich, A. Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl. Environ. Microbiol. 2000, 66 (6), 2372-2377. Ronisz, D.; Finne, E. F.; Karlsson, H.; Förlin, L. Effects of the brominated flame retardants hexabromocyclododecane (HBCDD), and tetrabromobisphenol A (TBBPA), on hepatic enzymes and other biomarkers in juvenile rainbow trout and feral eelpout. Aquat. Toxicol. 2004, 69, 229–245. Satapanajaru, T.; Comfort, S.D.; Shea, P.J. Enhancing metolachlor destruction rates with aluminum and iron salts during zerovalent iron treatment. J. Environ. Qual. 2003, 32 (5), 1726-1734. Shi, Z.; Jiao, Y.; Hu, Y.; Sun, Z.; Zhou, X.; Feng, J.; Li, J.; Wu, Y. Levels of tetrabromobisphenol A, hexabromocyclododecanes and polybrominated diphenyl ethers in human milk from the general population in Beijing, China. Sci. Total Environ. 2013, 452-453, 10-18. Shih, Y.H.; Chen, M.Y.; Su, Y.F. Reduction of hexachlorobenzene by nanoscale zero-valent iron: Kinetics, pH effect, and degradation mechanism. Separ. Sci. Technol. 2011, 76 (3), 268-274. Shih, Y.H.; Chen, M.Y.; Su, Y.F.; Tso, C.P. Concurrent oxidation and reduction of pentachlorophenol by bimetallic zerovalent Pd/Fe nanoparticles in an oxic water. J. Hazard. Mater. 2016, 301, 416–423. Shih, Y.H.; Tso, C.P. Fast decolorization of azo-dye Congo Red with zerovalent iron nanoparticles and sequential mineralization with a fenton Reaction. Environ. Eng. Sci. 2012, 29 (10), 929-933. Smuleac, V.; Varma, R.; Sikdar, S.; Bhattacharyya, D. Green Synthesis of Fe and Fe/Pd Bimetallic Nanoparticles in Membranes for Reductive Degradation of Chlorinated Organics. J. Memb. Sci. 2011, 379 (1-2), 131-137. Song, H.; Carraway, E.R. Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions. Environ. Sci. Technol. 2005, 39 (16), 6237-6245. Sun, Y.; Guo, H.; Yu, H.; Wang, X.; Wu, J.; Xue, Y. Bioaccumulation and physiological effects of tetrabromobisphenol A in coontail Ceratophyllum demersum L. Chemosphere 2008, 70 (10), 1787-1795. Sun, F.; Kolvenbach, B.A.; Nastold, P.; Jiang, B.; Ji, R.; Corvini, P.F. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems. Environ. Sci. Technol. 2014, 48 (24), 14291-14299. Sverdrup, L.E.; Hartnik, T.; Mariussen, E.; Jensen, J. Toxicity of three halogenated flame retardants to nitrifying bacteria, red clover (Trifolium pratense), and a soil invertebrate (Enchytraeus crypticus). Chemosphere 2006, 64 (1), 96-103. Szymanska, J. A.; Piotrowski, J. K.; Frydrych, B. Hepatotoxicity of tetrabromo-bisphenol-A: effects of repeated dosage in rats. Toxicology 2000, 142, 87–95. Tee, Y.H.; Grulke, E.; Bhattacharyya, B. Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind. Eng. Chem. Res. 2005, 44 (18), 7062–7070. Tian, H.; Li, J.J.; Mu, Z.; Li, L.D.; Hao, Z.P. Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. Sep. Purif. Technol. 2009, 66, 84–89. Tso, C.P.; Shih, Y.H. The transformation of hexabromocyclododecane using zerovalent iron nanoparticle aggregates. J. Hazard. Mater. 2014, 277, 76-83. Tso, C.P.; Shih, Y.H. The reactivity of well-dispersed zerovalent iron nanoparticles toward pentachlorophenol in water. Water Res. 2015, 72, 372-380. USEPA (US Environmental Protection Agency). TSCA work plan chemical problem formulation and initial assessment. Tetrabromobisphenol A and related chemicals cluster flame retardants. 2015. Available at: https://www.epa.gov/ sites/production/files/2015-9/documents/tbbpa_problem_formulation_august_ 2015.pdf Veldhoen, N.; Boggs, A.; Walzak, K.; Helbing, C.C. Exposure to tetrabromobisphenol-A alters TH-associated gene expression and tadpole metamorphosis in the Pacific tree frog Pseudacris regilla. Aquat. Toxicol. 2006, 78 (3), 292–302. Viberg, H.; Eriksson, P. Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice. Toxicology 2011, 289 (1), 59–65. Vom Saal, F. S.; Nagel, S. C.; Coe, B. L.; Angle, B. M.; Taylor, J. A. The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity. Mol Cell Endocrinol. 2012, 354 (1-2), 74-84. Waaijers, S.L.; Hartmann, J.; Soeter, A.M.; Helmus, R.; Kools, S.A.; de Voogt, P.; Admiraal, W.; Parsons, J.R.; Kraak, M.H. Toxicity of new generation flame retardants to Daphnia magna. Sci. Total Environ. 2013,463-464, 1042-1048. Wang X.; Chen, C.; Chang, Y.; Liu, H. Dechlorination of chlorinated methanes by Pd/Fe bimetallic nanoparticles. J. Hazard. Mater. 2009, 161 (2-3), 815-823. Wang, C.; Shih Y. Degradation and detoxification of diazinon by sono-Fenton and sono-Fenton-like processes. Sep. Purif. Technol. 2015, 140, 6–12 Wang, J.; Liu, L.; Wang, J.; Pan, B.; Fu, X.; Zhang, G.; Zhang, L.; Lin, K. Distribution of metals and brominated flame retardants (BFRs) in sediments, soils and plants from an informal e-waste dismantling site, South China. Environ. Sci. Pollut. Res. Int. 2015a, 22 (2), 1020-1033. Wang, W.; Abualnaja, K.O.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Minh, T.B.; Moon, H.B.; Nakata, H.; Sinha, R.K.; Kannan, K. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015b, 83, 183-191. Wang, S.; Cao, S.; Wang, Y.; Jiang, B.; Wang, L.; Sun, F.; Ji, R. Fate and metabolism of the brominated flame retardant tetrabromobisphenol A (TBBPA) in rice cell suspension culture. Environ. Pollut. 2016, 214, 299-306. Wang, X.; Hu, X.; Zhang, H.; Chang, F.; Luo, Y. Photolysis kinetics, mechanisms, and pathways of tetrabromobisphenol A in water under simulated solar light irradiation. Environ. Sci. Technol. 2015c, 49 (11), 6683−6690. WHO (1995) Environmental health criteria 172. Tetrabromobisphenol A and derivatives. World Health Organization, Geneva. Wojtowicz, A. K.; Szychowski, K. A.; Kajta, M. PPAR-γagonist GW1929 but not antagonist GW9662 reduces TBBPA-induced neurotoxicity in primary neocortical cells. Neurotox. Res. 2014, 25, 311–322. Wollenberger, L.; Dinan, L.; Breitholtz, M. Effects of brominated flame retardants on two marine copepod species, Acartia tonsa and Nitocra spinipes, and on the Ecdysteroid-Responsive Drosophila melanogaster BII-Cell-Line. Organohalogen Compounds 2002, 57, 451-454. Watanabe, W.; Shimizu, T.; Sawamura, R.; Hino, A.; Konno, K.; Hirose, A.; Kurokawa, M. Effects of tetrabromobisphenol A, a brominated flame retardant, on the immune response to respiratory syncytial virus infection in mice. Int. Immunopharm. 2010, 10, 393-397. Xu, J.; Meng, W.; Zhang, Y.; Li, L.; Guo, C.S. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: Efficacy, products and pathway. Appl. Catal. B: Environ. 2011, 107, 355-362. Xu, L.; Wang, J.L. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 2011, 186, 256–264. Yalfani, M.S.; Contreras, S.; Medina, F.; Sueiras, J. Phenol degradation by Fenton’s process using catalytic in situ generated hydrogen peroxide. Appl. Catal. B: Environ. 2009, 89 (3–4), 519–526. Yang, S.; Wang, S.; Liu, H.; Yan, Z. Tetrabromobisphenol A: tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China. Environ Sci. Pollut. Res. Int. 2012, 19 (9), 4090-4096. Yuan, Y; Li, H.; Lai, B.; Yang, P.; Gou, M.; Zhou, Y.; Sun, G. Removal of high-concentration C.I. Acid Orange 7 from aqueous solution by zerovalent iron/copper (Fe/Cu) bimetallic particles. Ind. Eng. Chem. Res. 2014, 53 (7), 2605–2613. Zhang, Y.; Jing, L.Y.; He, X.H.; Li, Y.F.; Ma, X. Sorption enhancement of TBBPA from water by fly ash-supported nanostructured γ-MnO2. J. Ind. Eng. Chem. 2015, 21, 610–619. Zhang, W.X. Nanoscale iron particles for environmental remediation: an overview. J. Nanopart. Res. 2003, 5, 323-332. Zhang, W.; Quan, X.; Wang, J.; Zhang, Z.; Chen, S. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere 2006, 65, 58-64. Zheng, Z.H.; Yuan, S.H.; Liu, Y.; Lu, X.H.; Wan, J.H.; Wu, X.H.; Chen, J. Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. J. Hazard. Mater. 2009, 170, 895–901. Zhou, T.; Li, Y.; Ji, J.; Wong, F.S.; Lu, X. Oxidation of 4-chlorophenol in a heterogeneous zero valent iron/H2O2 Fenton-like system: kinetic, pathway and effect factors. Sep. Purif. Technol. 2008, 62, 551–558. Zhou, X.; Guo, J.; Zhang, W.; Zhou, P.; Deng, J.; Lin, K. Tetrabromobisphenol A contamination and emission in printed circuit board production and implications for human exposure. J. Hazard. Mater. 2014, 273,27-35. Zhu, N.; Luan, H.; Yuan, S.; Chen, J.; Wu, X.; Wang, L. Effective dechlorination of HCB by nanoscale Cu/Fe particles. J. Hazard. Mater. 2010, 176, 1101–1105. Zhuang, Y.; Ahn, S.; Seyfferth, A.L.; Masue-Slowey, Y.; Fendorf, S.; Luthy, R.G. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ. Sci. Technol. 2011, 45 (11), 4896-4903. Zhuang, Y.; Jin, L.; Luthy, R.G. Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst. Chemosphere 2012, 89 (4), 426–432. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2593 | - |
dc.description.abstract | 四溴雙酚A (Tetrabromobisphenol, TBBPA)是最被廣泛使用的溴化阻燃劑,由於不當的貯存和處置,導致TBBPA已經在多種環境基質,甚至是人體中被偵測到。此外,許多前人研究顯示,TBBPA可能會對人體造成負面的影響,因此,開發出一個有效的TBBPA整治方法是非常重要的。奈米零價鐵已經成功地被應用於處理含鹵有機汙染物,而藉著第二種金屬當催化劑,形成的雙金屬顆粒能更有效地處理含鹵有機汙染物。然而TBBPA降解的副產物具有類似內分泌干擾素的能力,在此研究中,也將進一步探討Fenton 反應對於TBBPA脫溴副產物移除之效率。銅鐵雙金屬奈米顆粒能快速及有效地使TBBPA脫溴。在銅添加量上,4.0 % 的銅在銅鐵奈米顆粒上,具有最高的移除效率99.8 %,其擬一階速率常數為0.229 min-1。此外,當銅鐵雙金屬奈米顆粒劑量增加及TBBPA初始濃度下降時,TBBPA反應動力隨之上升。在TBBPA初始濃度為5.0 mg/L,銅鐵雙金屬奈米顆粒劑量為2.0 g/L時,TBBPA在30分鐘內會被完全移除,在反應期間,較低溴數的副產物和溴離子會被偵測到。銅鐵雙金屬奈米顆粒移除TBBPA之反應速率隨溫度增加而增加,並計算出活化能為35.64 kJ/mole,顯示此反應為表面控制之作用。在水溶液pH值的影響上,銅鐵雙金屬奈米顆粒較偏好在酸性環境下移除TBBPA。當pH值從9.0降低到5.0時,反應速率常數從0.191 min-1增加到 0.228 min-1,pH值持續地下降到3.0時,反應速率常數則會下降至0.162 min-1。另外,在pH 3.0 到pH 9.0間,其TBBPA的移除效率無顯著差異,皆高於98.5 %。然而,在pH 11.0時,其移除效率及反應速率常數則分別只有77.0 % 和0.063 min-1。Cu/Fe 雙金屬奈米顆粒可將TBBPA完全脫溴,藉由其脫溴副產物:三溴雙酚A、二溴雙酚A、一溴雙酚A及雙酚A (BisphenolA, BPA) 推測出其降解途徑。原則上,藉由銅鐵雙金屬奈米顆粒反應後鐵氧化生成的鐵離子及額外添加的H2O2,使TBBPA脫溴最終副產物BPA可利用Fenton 反應移除。在BPA溶液中,增加H2O2或Fe2+濃度,會增加BPA的移除速率;然而,過高的H2O2或Fe2+濃度,會降低BPA的移除速率,分別為從0.015 min-1降到0.0107 min-1及0.015 min-1降到0.0004 min-1。合成的銅鐵雙金屬奈米顆粒對於處理TBBPA有相當高的潛力,且結合H2O2能有效地礦化大部分的TBBPA與其脫溴副產物。
關鍵字:四溴雙酚A、雙酚A、銅鐵雙金屬奈米顆粒、脫溴 | zh_TW |
dc.description.abstract | Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardant. Due to its extensive usage and then improper storage and disposal, it has been detected in various environmental matrices and even human bodies. Moreover, many previous studies showed the results that TBBPA could cause many negative effects on human bodies. Thus, exploiting an effective method for TBBPA treatment is important. Nanoscale zero-valent iron has been successfully applied for treating halogenated organic pollutants. With a secondary metal as the catalyst, bimetallic nanoparticles (BNPs) become more efficient. However, the byproducts of TBBPA degradation have the ability like endocrine disruptor. In this study, we further investigated Fenton reaction for final TBBPA debrominated byproducts.
The results showed that Cu/Fe BNP aggregates demonstrated a fast and effective debromination of TBBPA. For copper doping, Cu/Fe NPs in 4.0 % copper ratio had the highest removal efficiency with a pseudo-first order rate constant of 0.229 min-1. Furthermore, reaction kinetics increased as the decreased initial TBBPA concentrations and the increased dosages of Cu/Fe BNPs. At the initial TBBPA concentration of 5.0 mg L-1, TBBPA could be completely removed within 30 min by a Cu/Fe NPs dosage of 2.0 g L-1, and less brominated byproducts and bromide ions were detected during the reactions. The activation energy of the TBBPA removal with Cu/Fe BNPs was 35.64 kJ/mole, indicating that the removal of TBBPA by Cu/Fe BNPs is surface-control mechanism. For the effect of aqueous pH, TBBPA removal by Cu/Fe NPs favored acid and neutral conditions. The removal rate constant increased from 0.191 to 0.228 min-1 with the decrease of pH from 9.0 to 5.0. The removal rate constant decreased to 0.162 min-1 with continuously dropped the pH to 3.0. Besides, the removal efficiencies were over 98.5 % and have no obvious difference at pH 3.0 to 9.0. However, at pH 11.0, the removal efficiency only 77.0 % with removal rate constant of 0.063 min-1. The complete debromination pathways of TBBPA with Cu/Fe were also presented by the identified byproducts: tribromobisphenol A, dibromobisphenol A, bromobisphenol A, and bisphenol A (BPA). In principle, the removal of the final debrominated byproduct, BPA, can be degraded by Fenton reaction through residual iron ions and additional H2O2. In BPA solutions, the increase of either H2O2 or Fe2+ concentration increased the BPA removal rate. However, a higher concentration of H2O2 or Fe2+ (both are 2.5mM) cause the BPA removal rate constant drop from 0.015 min-1 to 0.0107 min-1 and from 0.015 min-1 to 0.0014 min-1, respectively. The results demonstrated that our synthesized Cu/Fe bimetallic nanoparticles have a high potential for TBBPA treatment and combine with H2O2 to degrade most TBBPA debrominated byproducts effectively. Keyword: tetrabromobisphenol A (TBBPA), bisphenol A (BPA), Cu/Fe bimetallic nanoparticles (Cu/Fe BNPs), debromination | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:42:42Z (GMT). No. of bitstreams: 1 ntu-106-R03623019-1.pdf: 3328680 bytes, checksum: 73a3ce4ae5bc5fe31db4533d9bd0a003 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 摘要. I
Abstract………………………………………………………………………………. II List of Tables VII List of Figures VIII Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2-1 Introduction of tetrabromobisphenol A 3 2.2 The fate of TBBPA in the environment 6 2.3 Effects of TBBPA in biota 7 2.3.1 Effect in aquatic organisms 7 2.3.2 Effect in terrestrial organisms 9 2.3.3 Bioaccumulation of TBBPA 10 2.3.4 Human hazard potential 10 2.4 Introduction of zero valent iron and bimetallic particles 11 2.4.1 Microscale zero valent iron 11 2.4.2 Nanoscale zero valent iron 15 2.4.3 Ion-based bimetallic nanoparticles 15 2.5 The approaches of TBBPA removal 17 2.5.1 Photodegradation 18 2.5.2 Biodegradation 18 2.5.3 NZVI and iron-based bimetallic nanoparticles 19 2.5.4 Fenton reaction 20 Chapter 3 Material and methods 21 3.1 Chemicals 21 3.2 Synthesis of NZVI, Ni/Fe, and Cu/Fe nanoparticles 21 3.3 Characterization of the synthesized Cu/Fe nanoparticles 22 3.3.1 Field-emission scanning electron microscope, FE-SEM 23 3.3.2 Transmission electron microscope, TEM 23 3.3.3 Dynamic light scattering, DLS 24 3.3.4 Brunauer-Emmett-Teuller surface area 24 3.3.5 X-ray diffraction, XRD 25 3.3.6 X-ray absorption near edge structure, XANES 25 3.3.7 Raman Spectroscopy 26 3.4 Batch experiments 26 3.4.1 The effects of Cu content and Cu/Fe dosage on the removal of TBBPA with Cu/Fe nanoparticles 26 3.4.2 The effect of TBBPA concentration on the removal of TBBPA with Cu/Fe nanoparticles 27 3.4.3 The effect of initial pH on the removal of TBBPA with Cu/Fe nanoparticles 28 3.4.4 The effect of initial temperature on the removal of TBBPA with Cu/Fe nanoparticles 28 3.4.5 Further H2O2 treatment 29 3.5 Analysis methods of TBBPA and its byproducts 29 3.5.1 TBBPA and BPA stock solutions 29 3.5.2 Extraction method of TBBPA in solid and aqueous phase 29 3.5.3 Analytical methods of TBBPA 30 3.5.4 Analysis of byproducts 30 3.5.5 Anion analysis 31 3.5.6 Cation analysis 32 3.5.7 TOC analysis 32 3.6 TBBPA removal modeling 33 3.6.1 TBBPA removal rate constants 33 3.6.2 Removal efficiency 33 3.6.3 Debromination efficiency 34 3.6.4 Adsorption ratio and degradation ratio 34 Chapter 4 Results and Discussion 36 4.1 Characterization of Cu/Fe nanoparticles 36 4.2 Effect of copper percentage on the removal of TBBPA by Cu/Fe nanoparticles 42 4.3 Effect of dosage of Cu/Fe on the removal of TBBPA by Cu/Fe nanoparticles 47 4.4 Effect of initial TBBPA concentration on its removal by Cu/Fe nanoparticles 50 4.5 Effect of temperature on the removal of TBBPA by Cu/Fe nanoparticles 54 4.6 Effect of initial pH on the removal of TBBPA by Cu/Fe nanoparticles…......56 4.7 The surface property change of Cu/Fe nanoparticles after reaction 62 4.8 The proposed debromination pathways of TBBPA by Cu/Fe nanoparticles 63 4.9 Effect of H2O2 concentration on the removal of BPA by Fenton reaction 64 4.10 Effect of Fe2+ concentration on the removal of BPA by Fenton reaction 66 Chapter 5 Conclusions 69 Reference. 71 Appendix. 82 | |
dc.language.iso | en | |
dc.title | 銅鐵雙金屬奈米顆粒結合Fenton反應接續礦化移除四溴雙酚A | zh_TW |
dc.title | Removal of tetrabromobisphenol A by Cu/Fe bimetallic nanoparticles and sequential mineralization with a Fenton reaction | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 賴朝明(Chao-Ming Lai),連興隆,董瑞安,周佩欣 | |
dc.subject.keyword | 四溴雙酚A,雙酚A,銅鐵雙金屬奈米顆粒,脫溴, | zh_TW |
dc.subject.keyword | tetrabromobisphenol A (TBBPA),bisphenol A (BPA),Cu/Fe bimetallic nanoparticles (Cu/Fe BNPs),debromination, | en |
dc.relation.page | 84 | |
dc.identifier.doi | 10.6342/NTU201700450 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-02-14 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 3.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。