Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱文英(Wen-Yen Chiu)
dc.contributor.authorChen-Gang Wangen
dc.contributor.author王晨綱zh_TW
dc.date.accessioned2021-06-08T06:57:13Z-
dc.date.copyright2009-07-23
dc.date.issued2009
dc.date.submitted2009-07-18
dc.identifier.citation1 S. Salminen, A. V. Wright and A. Ouwehand (2004) Lactic Acid Bacteria, 3rd Ed., Marcel Dekker, New York, 1-67.
2 A. M. Liserre, M. I. Ré, and B. D. G. M. Franco (2007) Microencapsulation of Bifidobacterium animalis subsp. lactis in Modified Alginate-chitosan Beads and Evaluation of Survival in Simulated Gastrointestinal Conditions, Food Biotechnology, 21, 1–16.
3 K. Kailasapathy and J. Chin. (2000) Survival and Therapeutic Potential of Probiotic Organisms with Reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunology and Cell Biology, 78, 80-88.
4 V. Chandramouli, K. Kailasapathy, P. Peiris, and M. Jones (2004) An Improved Method of Microencapsulation and its Evaluation to Protect Lactobacillus spp. in Simulated Gastric Conditions. Journal of Microbiological Methods, 56, 27-35.
5 T. Y. Sheu, R. T. Marshall, and H. Heymann (1993) Improving Survival of Culture Bacteria in Frozen. Journal of Dairy Science, 76, 1902-1907.
6 T. A. McMeekin et al. (1997) Quantitative Microbiology: A Basis for Food Safety. Emerging Infectious Diseases, 3, 541-549.
7 D. M. Lilly and R. H. Stillwell (1965) Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science, 147, 747-748.
8 R. Fuller (1989) Probiotics in Man and Animals. Journal of Applied Bacteriology, 66, 365-378.
9 A. C. Ouwehand and S. J. Salminen (1998) The Health Effects of Cultured Milk Products with Viable and Non-viable Bacteria. International Dairy Journal, 8, 749-756.
10 A. S. Naidu, W. R. Bidlack, and R. A. Clemens (1999) Probiotic Spectra of Lactic 88 Acid Bacteria (LAB). Critical Reviews in Food Science and Nutrition, 38, 13-126.
11 Y-K Lee and S. Salminen (1995) The coming of age of probiotics. Trends in Food Science and Technology, 6, 241-245.
12 蘇遠志,黃世佑 (1999) 微生物化學工程學,華香園出版社,第二版,台灣,臺北,61-134.
13 D. J. O’Sullivan (2001) Screening of Intestinal Microflora for Effective Probiotic Bacteria. Journal of Agriculture and Food Chemistry, 49, 1751-1760.
14 F. Gasser (1994) Safety of Lactic Acid Bacteria and Their Occurrence in human 2 Clinical Infections. Bulletin de L'institut Pasteur, 92, 45-67.
15 W. H. Holzapfel et al.(1998) Overview of Gut Flora and Probiotics. International Journal of Food Microbiology, 41, 85-101.
16 A. C. Ouwehand, S. Salminen and E. Isolauri (2002) Probiotics: an Overview of Beneficial Effects. Antonie van Leeuwenhoek, 82, 279-289.
17 W. H. Holzapfel and U. Schillinger (2002) Introduction to Pre- and Probiotics. Food Research International, 35, 109-116.
18 M. E. Stiles and W. H. Holzapfel (1997) Lactic Acid Bacteria of Foods and Their Current Taxonomy. International Journal of Food Microbiology, 36, 1-29.
19 B. J. B. Wood and P. J. Warner.(2003) Genetics of Lactic Acid Bacteria. Kluwer Academic/Plenum Publishers, New York, 1-25, 95-121.
20 G. J. Ziemer and G. R. Gibson (1998) An Overview of Probiotics, Prebiotics and Synbiotics in the Functional Food Concept: Perspectives and Future Strategies. International Dairy Journal, 8, 473-479.
21 L. J. Fooks and G. R. Gibson (2002) Probiotics as Modulators of the Gut Flora. British Journal of Nutrition, 88, S39-S49.
22 T. Takahashi et al.(1993) Immune-Response of Mice to Orally-Administered Lactic-Acid Bacteria. Bioscience Biotechnology and Biochemistry, 57, 1557-1560.
23 A. C. Ouwehand and S. J. Salminen (1998) The Health Effects of Cultured Milk 89 Products with Viable and Non-viable Bacteria. International Dairy Journal, 8, 749-758.
24 L. M. Buck and S. E. Gilliland (1994) Comparisons of Freshly Isolated Strains of Lactobacillus acidophilus of Human Intestinal Origin for Ability to Assimilate Cholesterol During Growth. Journal of Dairy Science, 77, 2925-2933.
25 J. Z. Xiao et al. (2003) Effects of Milk Products Fermented by Bifidobacterium Longum on Blood Lipids in Rats and Healthy Adult Male Volunteers. Journal of Dairy Science, 86, 2452-2461.
26 J. Denter, B. Bisping (1994) Formation of B-vitamins by Bacteria during the Soaking Process of Soybeans for Tempe Fermentation. International Journal of Food Microbiology, 22, 23-31.
27 Y. Nakamura, N . Yamamoto, K. Sakai and T. Takano (1995) Antihypertensive Effects of Sour Milk and Peptides Isolated from it that are inhibitors to Angiotensin I-Converting Enzyme. Journal of Dairy Science, 78, 1253-1257.
28 S. Leena, J. Tiina , P. Tuija and K. Riitta (2003) A Fermented Milk High in Bioactive Peptides Has a Blood Pressure-Lowering Effect in Hypertensive Subjects. American Journal of Clinical Nutrition, 77, 326-330.
29 K. Hirayama and J. Rafter (2000) The Role of Probiotic Bacteria in Cancer Prevention. Microbes and Infection, 2, 681-686.
30 R. A Giannella, S. A. Broitman, and N. Zamcheck (1972) Gastric Acid Barrier to Ingested Microorganism in Man. Study in Vivo and in Vitro. Gut, 13, 251-256.
31 J. Prasad, H. Gill, J. Smart, and P. K. Gopal (1998) Selection and Characterisation of Lactobacillus and Bifidobacterium Strains for Use as Probiotics. International Dairy Journal, 8, 993-1002
32 B. Hyronimus, C. L. Marrec, A. H. Sassi, and A. Deschamps (2000) Acid and BileTolerance of Spore-Forming Lactic Acid Bacteria. International Journal of Food Microbiology, 61, 193-197.
33 C. S. Fávaro-Trindade and C. R. F. Grosso (2002) Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and Evaluation of their Survival at the pH Values of the Stomach and in Bile. Journal of Microencapsulation, 19, 485-494.
34 S. Erkkilä and E. Petäjä (2000) Screening of Commercial Meat Starter Cultures at Low pH and in the Presence of Bile Salts for Potential Probiotic Use. Meat Science, 55, 297-300.
35 M. Begley , C. G. M. Gahan , C. Hill (2005) The Interaction between Bacteria and Bile. FEMS Microbiology Reviews, 29, 625-651.
36 S. E. Gilliland (1979) Beneficial Interrelationships between Certain Microorganisms and Humans - Candidate Microorganisms for Use As Dietary Adjuncts. Journal of Food Protection, 42, 164-167.
37 D. O. NOH and S. E. Gilliland (1993) Influence of Bile on Cellular Integrity Activity of Lactobacillus acldophllus. Journal of Dairy Science, 76, 1253-1259.
38 H. S. Chung , Y. B. Kim, S. L. Chun, and G.E. Ji (1999) Screening and Selection of Acid and Bile Resistant Bifidobacteria. International Journal of Food Microbiology, 47, 25-32.
39 W. Krasaekoopt, B. Bhandari, and H. Deeth (2004) The Influence of Coating Materials on Some Properties of Alginate Beads and Survivability of Microencapsulated Probiotic Bacteria. International Dairy Journal, 14, 737-743.
40 S. E. Gilliland, S. S. Reilly, G. B. Kim, and H. S. Kim (2002) Viability During Storage of Selected Probiotic Lactobacilli and Bifidobacteria in a Yogurt-like Product, Journal of Food Science, 67, 3091-3095.
41 S. shimamura et al. (1992) Relationship Between Oxygen Sensitivity and Oxygen 91 Metabolism of Bifidobacterium Species. Journal of Dairy Science, 75, 3296-3306.
42 C. D. Scott (1987) Immobilized Cells: a Review of Recent Literature. Enzyme Microbial Technology, 1987, 9, 66-128.
43 C. Webb, G. M. Black, and B. Atkinson (1986) Process Engineering Aspects of Immobilized Cell System. Institution of chemical engineers, Rugby, Warwickshire, UK, 3-152.
44 I. A. Veliky and R. J. C. McLean (1994) Immobilized Biosystems. Theory and Practical Applications. Blackie Academic & Professinal, New York, 3-74.
45 N Gerbsch and R Buchholz (1995) New Processes and Actual Trends in
Biotechnology. FEMS Microbiology Reviews, 16, 259-269.
46 W. Krasaekoopt, B. Bhandari, and H. Deeth (2003) Evaluation of Encapsulation Techniques of Probiotics for Yoghurt, International Dairy Journal, 13, 3-13.
47 L. K. M. Upton and A. M. Loughlin (1990) Enhancing the Viability of
Lactobacillus plantarum Inoculum by Immobilizing the Cells in Calcium-Alginate Beads Incorporating Cryoprotectants. Applied and Environmental Microbiology, 56, 3112-3116.
48 W. Sun and M. W. Griffiths (2000) Survival of Bifidobacteria on Yogurt and Simulated Gastric Juice Following Immobilization in Gellan–Xanthan Beads International Journal of Food Microbiology, 61, 17-25.
49 J. S. Lee, D. S. Cha, and H. J. Park (2004) Survival of Freeze-Dried Lactobacillus bulgaricus KFRI 673 Chitosan-Coated Calcium Alginate Microparticles. Journal of Agriculture and Food Chemistry, 52, 7300-7305.
50 P. Audet, C. Paquin, and C. Lacroix (1988) Immobilized Growing Lactic Acid Bacteria with γ-Carrageenan−Locust Bean Gum Gel. Applied Microbiological Biotechnology, 29, 11-18.
51 C. L. Hyndman et al. (1993) Microencapsulation of Lactococcus lactis within Cross-Linked Gelatin Membranes. Journal of Chemical Technology and Biotechnology, 56, 259-263.
52 A. F. Groboillot et al. (1993) Membrane Form at ion by Interfacial Cross-Linking of Chitosan for Microencapsulation of Lactococcus Iactis. Biotechnology and Bioengineering, 42, 1157-1163.
53 B. C. Larisch, D. Poncelet, C. P. Champagne, and R. J. Neufeld (1994)
Microencapsulation of Lactococcus lactis subsp. Cremoris. Journal of
Microencapsulation, 11, 189 -195.
54 S. Mandal, A. K. Puniya, and K. Singh (2006) Effect of Alginate Concentrations on Survival of Microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal, 16, 1190-1195.
55 A. Picot and C. Lacroix (2004) Encapsulation of Bifidobacteria in Whey
Protein-Based Microcapsules and Survival in Simulated Gastrointestinal Conditions and in Yoghurt. International Dairy Journal, 14, 505-515.
56 E. S. Chan and Z. Zhang (2005) Bioencapsulation by Compression Coating of Probiotic Bacteria for their Protection in an Acidic Medium. Process Biochemistry, 40, 3346-3351.
57 O. Smidsrød and G. Skjâk-Bræk (1990) Alginate as Immobilization Matrix for Cells. Trends in Biotechnology, 8, 71-78.
58 S. Sugiura et al. (2005) Size Control of Calcium Alginate Beads containing Living Cells Using Micro-Nozzle Array. Biomaterials, 26, 3327-3331.
59 S. Peter, J. Cheetham, K. W. Blunt, and C. Buck (1979) Physical Studies on Cell Immobilization Using Calcium Alginate Gels. Biotechnology and Bioengineering, 21, 2155-2168.
60 N. M. Velings and M. M. Mestdagh (1995) Physico-Chemical Properties of Alginate Gel Beads. Polymer Gels and Networks, 3 ,31l-330.
61 K. Tokuyasu et al. (2000) Recognition of Chitooligosaccharides and Their N-Acetyl Groups by Putative Subsites of Chitin Deacetylase from a Deuteromycete, Colletotrichum lindemuthianum. Biochemistry, 39, 8837-8843.
62 K. T. Hwang et al. (2003) Properties of Chitosan-Based Biopolymer Films with Various Degrees of Deacetylation and Molecular Weights. Journal of Applied Polymer Science, 89, 3476-3484.
63 M. N. V. Ravi Kumar (2000) A Review of Chitin and Chitosan Applications. Reactive and Functional Polymers, 46, 1-27.
64 F. Shahidi, J. K. V. Arachchi, and Y. J. Jeon (1999) Food Applications of Chitin and Chitosans. Trends in Food Science and Technology, 10, 37-51.
65 W. E. Hennink, C. F. Van Nostrum (2002) Novel Crosslinking Methods to Design Hydrogels. Advanced Drug Delivery Reviews, 54, 13-36.
66 J. Bergera et al. (2004) Structure and Interactions in Chitosan Hydrogels Formed by Complexation or Aggregation for Biomedical Applications. European Journal of Pharmaceutics and Biopharmaceutics, 57, 35-52.
67 曾厚 (1997) Chitin與Chitosan之應用與發展現況,生物產業(bioindustry),8,102-108.
68 J. F. Prudden et al. (1970) The Discovery of a Potent Wound-Healing Accelerator Pure Chemical. The American Journal of Surgery, 119, 560-564.
69 B. Malette, Y. Paquette, Y. Merlen, and G. Bleav (1995) Oviductins Possess Chitinase- and Mucin-Like Domains: A Lead in the Search for the Biological Function of These Oviduct-Specific ZP-Associating Glycoproteins. Molecular Reproduction and Development, 41, 384-397.
70 T. W. Chunga et al.(2002) Preparation of Alginate/Galactosylated Chitosan Scaffold for Hepatocyte Attachment. Biomaterials, 23, 2827-2834.
71 M. Joaquim et al. (2007) Novel Hydroxyapatite/Chitosan Bilayered Scaffold for Osteochondral Tissue-Engineering Applications: Scaffold Design and its Performance when Seeded with Goat Bone Marrow Stromal Cells. Biomaterials, 27, 6123-6137.
72 莊仲揚,陳俊男 (2006) 幾丁聚醣於生醫產業上的應用,化工資訊與商情月刊,38, 62-66.
73 H. V. Sæther et al. (2008) Polyelectrolyte Complex Formation Using Alginate and Chitosan. Carbohydrate Polymers, 74, 813-821.
74 M. Hamidi , A. Azadi, and P. Rafiei (2008) Hydrogel Nanoparticles in Dru Delivery. Advanced Drug Delivery Reviews, 60, 1638-1649.
75 M. L. Huguet et al. (1994) Hemoglobin Encapsulation in Chitosan/Calcium Alginate Beads. Journal of Applied Polymer Science, 51, 1427-1432.
76 Z. Li et al.(2005) Chitosan–Alginate Hybrid Scaffolds for Bone Tissue Engineering. Biomaterials, 26, 3919-3928.
77 A. K. Anal and W. F. Stevens (2005) Chitosan–Alginate Multilayer Beads for Controlled Release of Ampicillin. International Journal of Pharmaceutics, 290, 45-54.
78 Y. H. Lin et al. (2005) Physically Crosslinked Alginate/N,O-Carboxymethyl Chitosan Hydrogels with Calcium for Oral Delivery Protein Drugs. Biomaterials, 26, 2105-2113.
79 G. Pasparakis and N. Bouropoulos (2006) Swelling Studies and in Vitro Release of Verapamil from Calcium Alginate and Calcium Alginate–Chitosan Beads. International Journal of Pharmaceutics, 323, 34-42.
80 劉英俊,汪金追,劉裕國 (1996) 最新圖解生物科技基礎實驗法,第四版,中央圖書出版社,臺北,台灣,1-41.
81 Y. Park et al. (2006) Synergism of Leu–Lys Rich Antimicrobial Peptides and Chloramphenicol against Bacterial Cells. Biochimica et Biophysica Acta, 1764, 24-32.
82 行政院衛生署中華藥典編修委員會編纂,侯勝茂總編修,中華藥典,第六版,衛生署,臺北市,2006.
83 G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres, and M. Rinaudo (1999) Physico-chemical Characterization of Ca-alginate Microparticles Produced with Different Methods. Biomaterials, 20, 1427-1435.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25932-
dc.description.abstract本研究利用兩種天然耐酸性材料,褐藻酸鈉與醋酸鄰苯二甲酸纖維素(CAP),以及耐鹼性材料-幾丁聚醣包覆乳酸(Lactobacillus plantarum),製成乳酸菌複合顆粒及乳酸菌粉。調整包覆製程條件,找尋最佳保護效果,以減少乳酸菌受到胃部酸性環境及腸道膽汁的損害,增進乳酸菌產品效能。
以褐藻酸鈉、幾丁聚醣及氯化鈣製備褐藻酸鈣/幾丁聚醣複合顆粒包覆乳酸菌,探討不同製程條件之複合顆粒對乳酸菌保護效果的影響。實驗結果發現若使顆粒中包覆的乳酸菌濃度過高,反而會造成存活率降低,以30 倍濃縮菌液為最佳包覆乳酸菌數。單層包覆之褐藻酸鈣顆粒,在經pH 2 人工胃液耐酸性測試後,包覆之乳酸菌存活率約為15%,再經褐藻酸鈉二重包覆後,可提升存活率至70%。以包覆法製備複合顆粒能夠有效增加顆粒中幾丁聚醣含量,其中又以使用重量平均分子量6 萬的幾丁聚醣製成複合顆粒有最佳的保護效果,此顆粒再經二重包覆複合顆粒,經pH 2 人工胃液處理兩小時,再於人工膽汁中經一小時後,仍有30%以上的存活率。使用較高濃度的氯化鈣溶液硬化顆粒,也可提升乳酸菌存活率。包覆乳酸菌之複合顆粒於人工腸液中經6~10 小時可將乳酸菌完全釋放,達到提升乳酸菌效能目的。
另一種包覆方法為利用褐藻酸鈉、CAP 及幾丁聚醣製成乳酸菌粉。實驗結果發現CAP 及幾丁聚醣皆可幫助乳酸菌沉降,提升乳酸菌收率。以褐藻酸鈉或CAP於外層包覆製備乳酸菌粉,兩種耐酸性包覆材料皆可有效提升乳酸菌粉耐酸性,其中以褐藻酸鈉包覆有較佳的保護效果,於人工胃液中經二小時後,約有68%的存活率。增加外層CAP 包覆濃度,也可提升菌粉耐酸性保護效果。在耐膽鹽性方面,以幾丁聚醣幫助乳酸菌離心之菌粉有較佳的耐膽鹽保護效果,如外層再以褐藻酸鈉進行包覆,此菌粉經耐膽鹽性測試三小時後,仍有5%以上存率。乳酸菌粉在人工腸液中4~6 小時即可完全釋放,藉此增進乳酸菌效能。
zh_TW
dc.description.abstractIn this study, sodium alginate, cellulose acetate phthalate (CAP) and chitosan wereused for encapsulating Lactobacillus plantarum, one species of the lactic acid bacteria(LAB). Survival ratio of the encapsulated LAB in simulated gastric fluid and intestinalenvironments were examined. Improvements of survival ratio were expected from encapsulation of LAB.
There were two types of encapsulated products. One was calcium alginate-chitosancomplex beads. The effects of cell load, beads with alginate double coating, different encapsulating methods, different molecular weight of chitosan and concentrations of calcium chloride were investigated. It was noted that raising in cell load could increase the number of survival LAB after 2 hour incubation in simulated gastric condition, but the survival ratio would decrease. If the encapsulated beads were coated with one more alginate layer, viability of encapsulated LAB could further increase. The calcium alginate beads coated with chitosan could significantly add chitosan in the beads, so LAB encapsulated in these beads would have higher viability after incubated in
simulated bile solution. The different concentrations of calcium chloride would also affect the survival ratio of encapsulated LAB after gastric and bile test. The encapsulated LAB in all types of beads would release in intestinal environment after about 6 to 10 hours.
The other type of encapsulated products was double-layer powder. The inner layer of powder was used CAP or chitosan, and the outer layer was CAP or sodium alginate. The sedimentation abilities of inner layer materials, CAP and chitosan, were investigated, and the survival ratio of encapsulated bacteria was evaluated under simulated gastric and intestinal environments. The result showed CAP and chitosan could also coprecipitate with bacteria, increasing the load of LAB in powder. The increment of concentration of coating CAP could increase the survival ratio after 2 hour incubation in simulated gastric fluid. Moreover, sodium alginate, which was the same as CAP, could also protect encapsulated LAB in gastric environment, and the sodium alginate had better result than CAP. After 2 hour in simulated bile solution, the powder used chitosan as inner layer had better survival results of encapsulated LAB. In addition, the encapsulated LAB could release in simulated intestinal solution after 4 to 6 hours.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:57:13Z (GMT). No. of bitstreams: 1
ntu-98-R96549007-1.pdf: 5431559 bytes, checksum: c86df4208d222f23df05009bb3d5fd93 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要............................................................................................... I
Abstract............................................................................................II
目錄.............................................................................................. IV
圖目錄...........................................................................................VIII
表目錄........................................................................................... XI
第一章 緒論.................................................................................. 1
1-1 前言.......................................................................................... 1
1-2 研究目的...................................................................................1
第二章 文獻回顧............................................................................. 3
2-1 益生菌......................................................................................... 3
2-1.1 益生菌定義.............................................................................. 3
2-1.2 益生菌種類.............................................................................. 4
2-2 乳酸菌及其對人體益處............................................................ 4
2-3 乳酸菌之環境耐性..................................................................... 6
2-3.1 耐酸性....................................................................................... 6
2-3.2 耐膽鹽性................................................................................... 7
2-4 微生物固定化定義及方法......................................................... 8
2-5.1 褐藻酸鈉結構.......................................................................... 12
2-5-2 褐藻酸鈉凝膠性質.................................................................. 12
2-5.3 影響褐藻酸鈣顆粒性質因素................................................ 13
2-6 幾丁聚醣簡介............................................................................. 14
2-6.1 幾丁質及幾丁聚醣來源及簡介............................................ 14
2-6.2 幾丁聚醣凝膠性質.................................................................. 15
2-6.3 幾丁聚醣應用.......................................................................... 15
2-7 褐藻酸鈉-幾丁聚醣錯合物....................................................... 17
2-8 研究目標...................................................................................... 18
第三章 實驗方法............................................................................. 24
3-1 實驗菌株..................................................................................... 24
3-2 實驗藥品..................................................................................... 24
3-3 實驗儀器..................................................................................... 30
3-4 實驗流程..................................................................................... 33
3-4.1 以褐藻酸鈣/幾丁聚醣包覆製成乳酸菌複合顆粒............ 33
3-4.2 以醋酸鄰苯二甲酸纖維素/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉..........................................................................................................33
3-5 實驗步驟..................................................................................... 33
3-5.1 種菌培養與活化..................................................................... 33
3-5.2 以混合法製備褐藻酸鈣/幾丁聚醣包覆乳酸菌複合顆粒34
3-5.3 以包覆法製備褐藻酸鈣/幾丁聚醣包覆乳酸菌複合顆粒35
3-5.4 以CAP/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉................ 36
3-5.5 活菌體數測定法..................................................................... 36
3-5.6 掃描式電子顯微鏡(SEM)分析................................................ 37
3-5.7 元素分析.................................................................................. 37
3-5.8 介面電位元分析儀分析........................................................ 37
3-6 以褐藻酸鈣/幾丁聚醣包覆製成乳酸菌複合顆粒之耐酸性實驗及探討........................................................................................... 38
3-6.1 製備人工胃液......................................................................... 38
3-6.2 包覆乳酸菌之複合顆粒耐酸性實驗................................... 38
3-7 以褐藻酸鈣/幾丁聚醣包覆製成乳酸菌複合顆粒之耐膽鹽性實驗及探討........................................................................................40
3-7.1 製備人工膽汁......................................................................... 40
3-7.2 包覆乳酸菌之複合顆粒耐膽鹽性實驗................................41
3-8 以褐藻酸鈣/幾丁聚醣包覆製成乳酸菌複合顆粒於人工腸液
釋放實驗及探討............................................................................... 42
3-8.1 製備人工腸液.......................................................................... 42
3-8.2 包覆乳酸菌之複合顆粒於人工腸液釋放實驗....................42
3-9 以CAP/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉之耐酸性實驗及探討................................................................................................ 43
3-10 以CAP/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉之耐膽鹽性實驗及探討.........................................................................................43
3-11 以CAP/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉於人工腸液
釋放實驗及探討................................................................................ 44
第四章 結果與討論.......................................................................... 49
4-1 褐藻酸鈉/幾丁聚醣複合顆粒元素分析結果........................ 49
4-2 以褐藻酸鈣/幾丁聚醣包覆製成乳酸菌複合顆粒之耐酸性探討......................................................................................................... 51
4-2.1 複合顆粒包覆不同濃度乳酸菌之探討................................ 51
4-2.2 單層包覆及多層包覆顆粒之探討........................................ 51
4-2.3 複合顆粒製程方法之探討.................................................... 52
4-2.4 鈣離子濃度對複合顆粒影響之探討................................... 52
4-2.5 不同幾丁聚醣分子量對複合顆粒影響之探討.................. 53
4-3 以褐藻酸鈣/幾丁聚醣包覆製成乳酸菌複合顆粒之耐膽鹽性探討.................................................................................................... 53
4-3.1 單層包覆及雙層包覆顆粒之探討....................................... 53
4-3.2 褐藻酸鈣/幾丁聚醣複合顆粒製程方法之探討................ 54
4-3.3 鈣離子濃度對複合顆粒影響之探討................................... 55
4-3.4 不同幾丁聚醣分子量對複合顆粒影響之探討.................. 55
4-4 以褐藻酸鈉/幾丁聚醣包覆製成乳酸菌複合顆粒於人工腸液釋放之探討.........................................................................................56
4-5 掃描式電子顯微鏡(SEM)分析.................................................... 57
4-6 乳酸菌及其包覆材料表面電位探討...................................... 58
4-6.1 pH 值對乳酸菌表面電位影響之探討.................................. 58
4-6.2 pH 值對CAP 溶液表面電位影響之探討............................... 58
4-6.3 pH 值對幾丁聚醣溶液表面電位影響之探討..................... 58
4-6.4 pH 值對褐藻酸鈉溶液表面電位影響之探討..................... 59
4-7 乳酸菌離心討論及SEM 觀察.................................................... 59
4-7.1 未經包覆之乳酸菌SEM 觀察................................................. 59
4-7.2 CAP 對乳酸菌離心效果影響之討論及SEM 觀察................ 59
4-7.3 幾丁聚醣對乳酸菌離心效果影響之討論及SEM 觀察...... 60
4-8 以CAP/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉之耐酸性探討......................................................................................................... 60
4-8.1 不同CAP 濃度包覆製得乳酸菌粉耐酸性結果討論.......... 60
4-8.2 以CAP 或褐藻酸鈉包覆製得乳酸菌粉耐酸性結果討論.. 61
4-9 以CAP/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉之耐膽鹽性探討......................................................................................................... 62
4-10 以CAP/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉於人工腸液釋放之探討..........................................................................................63
第五章 結論....................................................................................... 84
參考文獻............................................................................................. 87
附錄...................................................................................................... 96

圖目錄
圖2-1 乳酸菌代謝路徑................................................................. 19
圖2-2 細胞固定化技術................................................................. 20
圖2-3 以滴入法及乳化法包覆乳酸菌流程圖.......................... 20
圖2-4 褐藻酸鈉結構..................................................................... 21
圖2-5 褐藻酸鈣及蛋盒結構........................................................ 21
圖2-6 幾丁質、幾丁聚醣與纖維素結構圖.............................. 22
圖2-7 幾丁質、幾丁聚醣及其衍生物關係圖.......................... 23
圖2-8 褐藻酸鈉/幾丁聚醣錯合物之pH 值敏感性示意圖...... 23
圖3-1 以混合法製備包覆乳酸菌之褐藻酸鈣/幾丁聚醣複合顆粒流程圖............................................................................................. 45
圖3-2 以包覆法製備包覆乳酸菌之褐藻酸鈣/幾丁聚醣複合顆粒流程圖............................................................................................. 46
圖3-3 以醋酸鄰苯二甲酸纖維素/褐藻酸鈉/幾丁聚醣包覆製成乳酸菌粉流程圖............................................................................ 47
圖3-4 製備褐藻酸鈣顆粒實驗裝置示意圖............................... 48
圖4-1 以不同分子量之幾丁聚醣包覆褐藻酸鈣顆粒之SEM 圖65
圖4-2 以褐藻酸鈉溶液、0.2M 氯化鈣溶液及不同分子量之幾丁聚醣製備單層複合顆粒包覆乳酸菌,其耐酸性測試結果.... 65
圖4-3 以褐藻酸鈉溶液、0.05M 氯化鈣溶液及不同分子量之幾丁聚醣製備單層複合顆粒包覆乳酸菌,其耐酸性測試結果.... 66
圖4-4 以褐藻酸鈉溶液、0.2M 氯化鈣溶液及不同分子量之幾丁聚醣製備雙層複合顆粒包覆乳酸菌,其耐酸性測試結果......66
圖4-5 以褐藻酸鈉溶液、0.05M 氯化鈣溶液及不同分子量之幾丁聚醣製備雙層複合顆粒包覆乳酸菌,其耐酸性測試結果..... 67
圖4-6 以褐藻酸鈉溶液、0.2M 氯化鈣溶液及不同分子量之幾丁聚醣製備單層複合顆粒包覆乳酸菌,其經耐膽鹽性測試3 小時結果................................................................................................... 67
圖4-7 以褐藻酸鈉溶液、0.05M 氯化鈣溶液及不同分子量之幾丁聚醣製備單層複合顆粒包覆乳酸菌,其經耐膽鹽性測試3 小時結果................................................................................................... 68
圖4-8 以褐藻酸鈉溶液、0.2M 氯化鈣溶液及不同分子量之幾丁聚醣製備雙層複合顆粒包覆乳酸菌,其經耐膽鹽性測試1 小時結果................................................................................................... 68
圖4-9 以褐藻酸鈉溶液、0.2M 氯化鈣溶液及不同分子量之幾丁聚醣製備雙層複合顆粒包覆乳酸菌,其經耐膽鹽性測試3 小時結果................................................................................................... 69
圖4-10 以褐藻酸鈉溶液、0.05M 氯化鈣溶液及不同分子量之幾丁聚醣製備雙層複合顆粒包覆乳酸菌,其經耐膽鹽性測試1 小時結果.............................................................................................. 69
圖4-11 以褐藻酸鈉溶液、0.05M 氯化鈣溶液及不同分子量之幾丁聚醣製備雙層複合顆粒包覆乳酸菌,其經耐膽鹽性測試3 小時結果.............................................................................................. 70
圖4-12 以褐藻酸鈉溶液、0.2M 氯化鈣溶液及不同分子量之幾丁聚醣製備雙層複合顆粒包覆乳酸菌,其於人工腸液中釋放結果....................................................................................................... 70
圖4-13 以褐藻酸鈉溶液、0.05M 氯化鈣溶液及不同分子量之幾丁聚醣製備雙層複合顆粒包覆乳酸菌,其於人工腸液中釋放結果........................................................................................................ 71
圖4-14 包覆乳酸菌之褐藻酸鈣/幾丁聚醣複合顆粒SEM 圖 (放大4000 倍) ............................................................................................ 72
圖4-15 包覆乳酸菌之褐藻酸鈣/幾丁聚醣複合顆粒SEM 圖 (放大12000 倍) ...........................................................................................73
圖4-16 未調整pH 值之乳酸菌液電位圖...................................... 74
圖4-17 pH 6 乳酸菌液電位圖........................................................ 74
圖4-18 pH 5.00 CAP 溶液電位圖.................................................... 75
圖4-19 pH 7.00 CAP 溶液電位圖.................................................... 75
圖4-20 pH 4.00 幾丁聚醣溶液電位圖........................................... 76
圖4-21 pH 6.54 幾丁聚醣溶液電位圖........................................... 76
圖4-22 pH 3.50 褐藻酸鈉溶液電位圖........................................... 77
圖4-23 pH 5.20 褐藻酸鈉溶液電位圖........................................... 77
圖4-24 pH 11.59 褐藻酸鈉溶液電位圖......................................... 78
圖4-25 未包覆之乳酸菌SEM 圖...................................................... 78
圖4-26 pH 6 乳酸菌及CAP 混合溶液電位圖................................ 79
圖4-27 添加CAP 離心之乳酸菌SEM 圖.......................................... 79
圖4-28 添加CAP 離心之乳酸菌並添加冷凍乾燥保護劑之SEM 觀察......................................................................................................... 80
圖4-29 添加幾丁聚醣離心之乳酸菌SEM 圖................................. 80
圖4-30 添加幾丁聚醣離心之乳酸菌並添加冷凍乾燥保護劑之SEM 觀察............................................................................................. 81
圖4-31 乳酸菌液加入CAP 離心後,以不同濃度CAP 包覆製得菌粉之耐酸性測試結果...................................................................... 81
圖4-32 乳酸菌液加入CAP 或幾丁聚醣離心後,以CAP 或褐藻酸鈉包覆製得菌粉之耐酸性測試結果............................................ 82
圖4-33 乳酸菌液加入CAP 或幾丁聚醣離心後,以CAP 或褐藻酸鈉包覆製得菌粉之耐膽鹽性測試結果........................................ 82
圖4-34 乳酸菌液加入CAP 或幾丁聚醣離心後,以CAP 或褐藻酸鈉包覆製得菌粉於人工腸液釋放結果........................................ 83
附錄圖I 幾丁聚醣溶液之濃度-黏度變化關係圖....................... 96
附錄圖II 乳酸菌顆粒形態SEM 圖.................................................. 97
附錄圖III 乳酸菌顆粒橫切面形態SEM 圖.................................... 98
表目錄
表2-1 益生菌應具備之性質............................................................ 3
表2-2 應用於益生菌產品之微生物種類...................................... 4
表2-3 乳酸菌包覆材料及製程方法.............................................. 10
表3-1 製備褐藻酸鈣/幾丁聚醣複合顆粒實驗條件................... 39
表4-1 褐藻酸鈣/幾丁聚醣複合顆粒元素分析結果................... 50
表4-2 以0.05Ca-[Alg-c-200CS]-Alg 包覆不同濃縮倍數之乳酸菌液,製得之複合顆經耐酸性測試結果................................................. 51
表4-3 乳酸菌液加入CAP 離心後,經不同濃度CAP 包覆製得菌粉,菌粉經耐酸性測試結果.......................................................... 61
表4-4 乳酸菌液加入CAP 或幾丁聚醣離心後,再以CAP 或褐酸酸鈉包覆製得乳酸菌粉,菌粉經耐酸性測試結果........................ 62
表4-5 乳酸菌液加入CAP 或幾丁聚醣離心後,再以CAP 或褐酸酸鈉包覆製得乳酸菌粉,菌粉經耐膽鹽性測試結果................... 63
附錄表I 以褐藻酸鈣/幾丁聚醣複合顆粒包覆乳酸菌,經耐酸性測試後,存活菌數及存活率結果................................................. 99
附錄表II 以褐藻酸鈣/幾丁聚醣複合顆粒包覆乳酸菌,經耐膽鹽性測試後,存活菌數及存活率結果............................................ 100
dc.language.isozh-TW
dc.title以聚醣類高分子包覆之乳酸菌於模擬胃腸環境中耐受
性及釋放性質探討
zh_TW
dc.titleStudies on the Acid-base Tolerances and Release Properties
of Lactic Acid Bacteria Encapsulated in Polysaccharides
under Simulated Gastrointestinal Conditions
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃世佑,謝國煌(Kuo-Huang Hsieh),董崇民
dc.subject.keyword乳酸菌,褐藻酸鈉,幾丁聚醣,醋酸鄰苯二甲酸纖維素,包覆,zh_TW
dc.subject.keywordlactic acid bacteria,sodium alginate,cellulose acetate phthalate,chitosan,encapsulation,en
dc.relation.page100
dc.rights.note未授權
dc.date.accepted2009-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
5.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved