請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2592完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張明輝(Ming-Huei Chang) | |
| dc.contributor.author | Chieh-Yuan Tsai | en |
| dc.contributor.author | 蔡婕媛 | zh_TW |
| dc.date.accessioned | 2021-05-13T06:42:41Z | - |
| dc.date.available | 2020-02-15 | |
| dc.date.available | 2021-05-13T06:42:41Z | - |
| dc.date.copyright | 2017-02-21 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-02-14 | |
| dc.identifier.citation | Alford, M. H., R.-C. Lien, H. Simmons, J. Klymak, S. Ramp, Y.-J. Yang, D. Tang, and M.-H. Chang (2010), Speed and evolution of nonlinear internal waves transiting the South China Sea, J. Phys. Oceanogr., 40(6), 1338-1355, doi:10.1175/2010JPO4388.1.
Alford, M. H., et al. (2011), Energy flux and dissipation in Luzon Strait: Two tales of two ridges, J. Phys. Oceanogr., 41(11), 2211-2222, doi:10.1175/JPO-D-11-073.1. Alford, M. H., et al. (2015), The formation and fate of internal waves in the South China Sea, Nature, 521, 65-69, doi:10.1038/nature14399. Benney, D. J. (1966), Long non-linear waves in fluid flows, J. Math. Phys., 45, 52-63, doi:10.1002/sapm196645152. Chang, M.-H., R.-C. Lien, Y.-J. Yang, and T. Y. Tang (2011), Nonlinear internal wave properties estimated with moored ADCP measurements, J. Atmos. Oceanic Technol., 28(6), 802-815, doi:10.1175/2010jtecho814.1. Chang, M.-H., R.-C. Lien, Y.-J. Yang, T. Y. Tang, and J. Wang (2008), A composite view of surface signatures and interior properties of nonlinear internal waves: Observations and applications, J. Atmos. Oceanic Technol., 25(7), 1218-1227, doi:10.1175/2007jtecho574.1. Chang, M.-H., R.-C. Lien, T. Y. Tang, E. A. D'Asaro, and Y.-J. Yang (2006), Energy flux of nonlinear internal waves in northern South China Sea, Geophys. Res. Lett., 33, L03607, doi:10.1029/2005GL025196. Chelton, D. B., M. G. Schlax, and R. M. Samelson (2011), Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91(2), 167-216, doi:10.1016/j.pocean.2011.01.002. Chen, G., Y. Hou, and X. Chu (2011), Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure, J. Geophys. Res., 116, C06018, doi:10.1029/2010JC006716. Du, Y., D. Wu, F. Liang, J. Yi, Y. Mo, Z. He, and T. Pei (2016), Major migration corridors of mesoscale ocean eddies in the South China Sea from 1992 to 2012, J. Mar. Syst., 158, 173-181, doi:10.1016/j.jmarsys.2016.01.013. Duda, T. F., J. F. Lynch, J. D. Irish, R. C. Beardsley, S. R. Ramp, C.-S. Chiu, T. Y. Tang, and Y.-J. Yang (2004), Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea, IEEE J. Oceanic Eng., 29(4), 1105-1130, doi:10.1109/JOE.2004.836998. Duda, T. F., and L. Rainville (2008), Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea, J. Geophys. Res., 113, C03025, doi:10.1029/2007JC004418. Farmer, D., Q. Li, and J.-H. Park (2009), Internal wave observations in the South China Sea: The role of rotation and non‐linearity, Atmos. Ocean, 47(4), 267-280, doi:10.3137/oc313.2009. Fu, K.-H., Y.-H. Wang, L. St Laurent, H. Simmons, and D.-P. Wang (2012), Shoaling of large-amplitude nonlinear internal waves at Dongsha Atoll in the northern South China Sea, Cont. Shelf Res., 37, 1-7, doi:10.1016/j.csr.2012.01.010. Gill, A. E. (1982), Atmosphere-Ocean Dynamics, 662 pp., Academic Press, New York. He, Z., D. Wang, and J. Hu (2002), Features of eddy kinetic energy and variations of upper circulation in the South China Sea, Acta Oceanol. Sin., 21, 305-315. Helfrich, K. R., and R. H. J. Grimshaw (2008), Nonlinear disintegration of the internal tide, J. Phys. Oceanogr., 38(3), 686-701, doi:10.1175/2007JPO3826.1. Helfrich, K. R., and W. K. Melville (1986), On long nonlinear internal waves over slope-shelf topography, J. Fluid Mech., 167, 285-308, doi: 10.1017/S0022112086002823. Helfrich, K. R., W. K. Melville, and J. W. Miles (1984), On interfacial solitary waves over slowly varying topography, J. Fluid Mech., 149, 305-317, doi: 10.1017/S0022112084002664. Hsu, M.-K., and A. K. Liu (2000), Nonlinear internal waves in the South China Sea, Can. J. Remote Sens., 26(2), 72-81, doi:10.1080/07038992.2000.10874757. Hwang, C., and S.-A. Chen (2000), Circulations and eddies over the South China Sea derived from TOPEX/Poseidon altimetry, J. Geophys. Res., 105(C10), 23943-23965, doi:10.1029/2000JC900092. Jan, S., R.-C. Lien, and C.-H. Ting (2008), Numerical study of baroclinic tides in Luzon Strait, J. Oceanogr., 64(5), 789-802, doi:10.1007/s10872-008-0066-5. Jia, Y., and Q. Liu (2004), Eddy shedding from the Kuroshio bend at Luzon Strait, J. Oceanogr., 60(6), 1063-1069, doi:10.1007/s10872-005-0014-6. Klymak, J. M., M. H. Alford, R. Pinkel, R.-C. Lien, Y.-J. Yang, and T. Y. Tang (2011), The breaking and scattering of the internal tide on a continental slope, J. Phys. Oceanogr., 41(5), 926-945, doi:10.1175/2010JPO4500.1. Korteweg, D. J., and G. de Vries (1895), On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine Series 5, 39(240), 422-443, doi:10.1080/14786449508620739. Kubota, T., D. R. S. Ko, and L. D. Dobbs (1978), Weakly-nonlinear, long internal gravity-waves in stratified fluids of finite depth, J. Hydronaut., 12(4), 157-165, doi:10.2514/3.63127. Li, Q., and D. M. Farmer (2011), The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea, J. Phys. Oceanogr., 41(7), 1345-1363, doi:10.1175/2011JPO4587.1. Liao, G., C. Yang, X. Xu, X. Shi, Y. Yuan, and W. Huang (2012), Effects of mesoscale eddies on the internal solitary wave propagation, Acta Oceanol. Sin., 31, 26-40, doi:10.1007/s13131-012-0233-9. Lien, R.-C., F. Henyey, B. Ma, and Y.-J. Yang (2014), Large-amplitude internal solitary waves observed in the northern South China Sea: Properties and energetics, J. Phys. Oceanogr., 44(4), 1095-1115, doi:10.1175/JPO-D-13-088.1. Lien, R.-C., E. A. D'Asaro, F. Henyey, M.-H. Chang, T. Y. Tang, and Y.-J. Yang (2012), Trapped core formation within a shoaling nonlinear internal wave, J. Phys. Oceanogr., 42(4), 511-525, doi:10.1175/2011JPO4578.1. Lien, R.-C., T. Y. Tang, M.-H. Chang, and E. A. D'Asaro (2005), Energy of nonlinear internal waves in the South China Sea, Geophys. Res. Lett., 32, L05615, doi:10.1029/2004GL022012. Lin, P., F. Wang, Y. Chen, and X. Tang (2007), Temporal and spatial variation characteristics on eddies in the South China Sea, part I. Statistical analyses (in Chinese with English abstract), Acta Oceanol. Sin., 29, 14-22. Liu, A. K. (1988), Analysis of nonlinear internal waves in the New York Bight, J. Geophys. Res., 93(C10), 12317-12329, doi:10.1029/JC093iC10p12317. Liu, A. K., Y. S. Chang, M.-K. Hsu, and N. K. Liang (1998), Evolution of nonlinear internal waves in the East and South China Seas, J. Geophys. Res., 103(C4), 7995-8008, doi:10.1029/97JC01918. Liu, A. K., S. R. Ramp, Y. Zhao, and T. Y. Tang (2004), A case study of internal solitary wave propagation during ASIAEX 2001, IEEE J. Oceanic Eng., 29(4), 1144-1156, doi:10.1109/joe.2004.841392. Liu, C., Y. Du, W. Zhuang, H. Xia, and Q. Xie (2013), Evolution and propagation of a mesoscale eddy in the northern South China Sea during winter, Acta Oceanol. Sin., 32, 1-7, doi:10.1007/s13131-013-0325-1. Ma, B. B., R.-C. Lien, and D. S. Ko (2013), The variability of internal tides in the northern South China Sea, J. Oceanogr., 69(5), 619-630, doi:10.1007/s10872-013-0198-0. Orr, M. H., and P. C. Mignerey (2003), Nonlinear internal waves in the South China Sea: Observation of the conversion of depression internal waves to elevation internal waves, J. Geophys. Res., 108(C3), 3064, doi:10.1029/2001JC001163. Ramp, S. R., T. Y. Tang, T. F. Duda, J. F. Lynch, A. K. Liu, C.-S. Chiu, F. L. Bahr, H. R. Kim, and Y.-J. Yang (2004), Internal solitons in the northeastern South China Sea Part I: Sources and deep water propagation, IEEE J. Oceanic Eng., 29(4), 1157-1181, doi:10.1109/JOE.2004.840839. Riser, S. C., et al. (2016), Fifteen years of ocean observations with the global Argo array, Nat. Clim. Change, 6, 145-153, doi:10.1038/NCLIMATE2872. Schmid, C., R. L. Molinari, R. Sabina, Y.-H. Daneshzadeh, X. Xia, E. Forteza, and H. Yang (2007), The real-time data management system for Argo profiling float observations, J. Atmos. Oceanic Technol., 24(9), 1608-1628, doi:10.1175/JTECH2070.1. Shroyer, E. L., J. N. Moum, and J. D. Nash (2009), Observations of polarity reversal in shoaling nonlinear internal waves, J. Phys. Oceanogr., 39(3), 691-701, doi:10.1175/2008jpo3953.1. St Laurent, L., H. Simmons, T. Y. Tang, and Y. H. Wang (2011), Turbulent properties of internal waves in the South China Sea, Oceanography, 24(4), 78-87, doi:10.5670/oceanog.2011.96. St. Laurent, L. (2008), Turbulent dissipation on the margins of the South China Sea, Geophys. Res. Lett., 35, doi:10.1029/2008GL035520. Vlasenko, V., and K. Hutter (2002), Numerical experiments on the breaking of solitary internal waves over a slope–shelf topography, J. Phys. Oceanogr., 32(6), 1779-1793, doi:10.1175/1520-0485(2002)032<1779:neotbo>2.0.co;2. Vlasenko, V., and N. Stashchuk (2007), Three-dimensional shoaling of large-amplitude internal waves, J. Geophys. Res., 112, C11018, doi:10.1029/2007JC004107. Wang, D., H. Xu, J. Lin, and J. Hu (2008), Anticyclonic eddies in the northeastern South China Sea during winter 2003/2004, J. Oceanogr., 64(6), 925-935, doi: 10.1007/s10872-008-0076-3. Wang, L., C. J. Koblinsky, and S. Howden (2000), Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data, Deep Sea Res. Part I, 47(4), 681-708, doi: 10.1016/S0967-0637(99)00068-0. Xie, J., Y. He, Z. Chen, J. Xu, and S. Cai (2015), Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea, J. Phys. Oceanogr., 45(12), 2959-2978, doi:10.1175/JPO-D-15-0029.1. Xiu, P., F. Chai, L. Shi, H. Xue, and Y. Chao (2010), A census of eddy activities in the South China Sea during 1993–2007, J. Geophys. Res., 115, C03012, doi:10.1029/2009JC005657. Yang, H., and Q. Liu (2003), Forced rossby wave in the northern South China Sea, Deep Sea Res. Part I, 50(7), 917-926, doi:10.1016/S0967-0637(03)00074-8. Yang, Y.-J., T. Y. Tang, M.-H. Chang, A. K. Liu, M.-K. Hsu, and S. R. Ramp (2004), Solitons northeast of Tung-Sha Island during the ASIAEX pilot studies, IEEE J. Oceanic Eng., 29(4), 1182-1199, doi:10.1109/JOE.2004.841424. Yuan, D., W. Han, and D. Hu (2006), Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data, J. Geophys. Res., 111, C11007, doi:10.1029/2005JC003412. Zhao, Z., and M. H. Alford (2006), Source and propagation of internal solitary waves in the northeastern South China Sea, J. Geophys. Res., 111, C11012, doi:10.1029/2006JC003644. Zhao, Z., V. Klemas, Q. Zheng, and X.-H. Yan (2004), Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea, Geophys. Res. Lett., 31, L06302, doi:10.1029/2003GL019077. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2592 | - |
| dc.description.abstract | 本論文使用現場錨碇觀測及衛星資料研究內孤立波自下沉型轉化為上舉型內孤立波之現象。於2007年兩組位於東沙台地附近海域且沿著21° 05’ N之ADCP錨碇資料(為期4個月)顯示,約2月上旬,內孤立波由下沉型(深水站LR1,位於水深605公尺)轉變為上舉型(淺水站LR2,位於水深427公尺)之事件頻繁發生,事件發生時下沉型內孤立波變寬並呈現結構不對稱,前緣接近與地形斜坡平行,其後並跟隨一上舉型內孤立波。於此期間有一個半徑約50公里的反氣旋式渦漩從錨碇站東北方進入錨碇觀測海域,造成顯著的背景流場,U_max~0.4 m/s,V_max~0.4 m/s。在KdV內孤立波理論中指出非線性係數α大於0及小於0時分別有利於上舉型及下沉型內孤立波的存在,我們的分析發現,反氣旋式渦漩存在期間確實可滿足上舉型內孤立波發生的條件(α>0),然而此期間的內潮亦扮演重要的角色,當內潮位於上舉(elevated)相位時,可抵銷反氣旋式渦漩的效應,此時仍為下沉型內孤立波(α<0),觀測資料與KdV理論相符。此外,能量收支分析顯示淺水站的上舉型內孤立波係由深水站的下沉型內孤立波的能量轉化而來,深水站的下沉型內孤立波之動能相當於淺水站的下沉型及上舉型內孤立波之動能的總和,而淺水站的下沉型內孤立波之動能則少於深水站約10%。 | zh_TW |
| dc.description.abstract | Using observation and satellite data, the conversion from depression to elevation internal solitary waves (ISWs) was investigated. Observations were taken by one set of two ADCP moorings aligned along 21° 05’ N near the eastern flank of the Dongsha Plateau for 4 months. In early February 2007, the conversion from depression ISWs in deep water site (LR1, at a depth of 605 m) to elevation ISWs in shallow water site (LR2, at a depth of 427 m) was frequently observed. The conversion process showed the depression ISWs became broad and asymmetric with the front edge nearly parallel to the bottom slope, followed by an elevation ISW. In the period, an anticyclonic eddy with a scale of 100 km propagated into our mooring sites from northeast of Dongsha Plateau, producing a background flow of U_max~0.4 m/s and V_max~0.4 m/s. In KdV theory, the phase of depression and elevation ISWs are determined by the nonlinear coefficient α, i.e. the conditions of α>0 and α<0 favor the presence of elevation and depression ISWs, respectively. We found that the hydrographic condition in the presence of anticyclonic eddy indeed support the occurrence of elevation ISWs (α>0). Furthermore, the internal tides play a role as well, i.e. the effect of anticyclonic eddy can be cancelled by the elevated phase of internal tides while ISWs are depression waves (α<0). Analysis of energy budget supports that the energy of elevation ISWs at LR2 is converted from the depression ISWs at LR1. The kinetic energy of depression ISWs at LR1 is approximately equal to the summation of kinetic energy of depression and elevation ISWs at LR2. The kinetic energy of depression ISWs at LR2 is ~10% less than that at LR1. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T06:42:41Z (GMT). No. of bitstreams: 1 ntu-106-R03241103-1.pdf: 16017274 bytes, checksum: 95b9091adfaf8363ade0a43f32d5463d (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 iv 圖目錄 viii 表目錄 viii 第一章、緒論 1 1.1內孤立波 1 1.2內孤立波的轉化:下沉型至上舉型 3 1.2.1轉化過程 3 1.2.2造成轉化過程之條件:垂直水文結構 7 1.3內孤立波之極性 9 1.4研究動機 11 第二章、資料來源 12 2.1現場觀測資料 12 2.1.1錨碇資料 12 2.1.2 ARGO剖面浮標 14 2.2衛星觀測資料 15 2.2.1衛星測高儀資料 15 第三章、資料分析與結果 16 3.1 ADCP之時序資料 16 3.2背景流場 23 3.3反氣旋式渦漩之水文結構 27 3.4內孤立波的能量收支 30 第四章、影響轉化過程之機制 35 4.1反氣旋式渦漩通過前後之轉化條件 35 4.2內潮效應影響下之轉化條件 37 第五章、結論 43 參考文獻 45 | |
| dc.language.iso | zh-TW | |
| dc.subject | 內波 | zh_TW |
| dc.subject | 渦漩 | zh_TW |
| dc.subject | 南海 | zh_TW |
| dc.subject | 東沙 | zh_TW |
| dc.subject | 下沉型內波 | zh_TW |
| dc.subject | 內孤立波 | zh_TW |
| dc.subject | 上舉型內波 | zh_TW |
| dc.subject | Dongsha | en |
| dc.subject | internal wave | en |
| dc.subject | internal solitary wave | en |
| dc.subject | depression wave | en |
| dc.subject | elevation wave | en |
| dc.subject | eddy | en |
| dc.subject | South China Sea | en |
| dc.title | 內孤立波受淺化地形影響之觀測:自下沉型轉化為上舉型 | zh_TW |
| dc.title | Observation of Shoaling Effect on Internal Solitary Waves: Conversion from Depression to Elevation Wave | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 詹森(Sen Jan),楊穎堅(Yiing-Jang Yang),陳冠宇 | |
| dc.subject.keyword | 內波,內孤立波,下沉型內波,上舉型內波,渦漩,南海,東沙, | zh_TW |
| dc.subject.keyword | internal wave,internal solitary wave,depression wave,elevation wave,eddy,South China Sea,Dongsha, | en |
| dc.relation.page | 51 | |
| dc.identifier.doi | 10.6342/NTU201700451 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-02-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 15.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
