請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25919完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭真祥(Jen-Shiang Kouh) | |
| dc.contributor.author | Hui-Ting Lin | en |
| dc.contributor.author | 林惠婷 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:57:03Z | - |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-15 | |
| dc.identifier.citation | [1]M. J. Stanway, “Hydrodynamic Effects of Leading Edge Tubercles on Contral Surfaces and in Flapping Foil Propulsion,’’ Master's thesis, MIT, 2008.
[2]P. Watts, F. E. Fish, “The Influence of Passive, Leading Edge Tubercles on Wing Perforance,’’Proceeding of the Eleventh International Symposium on Unmanned Untethered Submersible Technology, 2001. [3]D. S. Miklosovic, M. M. Murray, L. E. Howle, and F. E. Fish, “Leading-Edge Tubercles Delay Stall on Humpback Whale Flippers,’’ Physics of Fluids, vol. 16, p. L39, 2004. [4]D. S. Miklosovic, M. M. Murray, and L .E. Howle, “Experimental Evaluation of Sinusoidal Leading Edges,’’ Journal of Aircraft, vol. 44, pp. 1404-1408, 2007. [5]A. Levshin, D. Custodio, C. Henoch, H. Johari, “Effects of Leading Edge Protuberances on Airfoil Performance,’’ AIAA Journal, Vol. 45, No. 11, pp. 2634-2642, 2007 [6] E. A. Van Nierop, S. Alben, M. P. Brenner, “How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model,’’ Physical Review Letters, Vol. 100, No.5, pp. 054502-1-054502-4,2008. [7]T, C. P. Hugo, H. M. Kobayashi, “Numerical Steady of Stall Delay on Humpback Whale Flippers,’’ Paper 2008-0584, 46th AIAA Aerospace Sciences Meeting and Exhibit, 7-10 January, 2008. [8]ARAI. Hiroshi, DOI. Yasuaki, NAKASHIMA. Takuji, MUTSUDA. Hidemi, “A Study on Stall Delay by Various Wavy Leading Edges,’’ Journal of Aero Aqua Bio-mechanisms, Vol. 1, No.1, pp.18-23, 2010. [9] P. W. Weber, L. E. Howle, M. M.Murray , “Lift, Drag, and Cavitation Onset on Rudders with Leading Edge Tubercles,’’ Marine Technology, Vol. 47, No. 1, pp. 27-36,2010. [10]R. W. Fox, A. T. McDonald, P. J. Pritchard, “Introduction to Fluid Mechinics,’’ INC.2004. [11]Fluent Version 6.3.26 User Guide [12] Gambit Version 2.3.16 User Guide. [13] Ira H. Abbott, Albert Edward Von Doenhoff “Theory of Wing Sections,” 1959. [14]J. G. Lowry, E. C. Polhamus, “A Method For Predictind Lift Increments Due To Flap Deflection at Low Angles of Attack Incompressible Flow,’’ NACA TN3911, 1957. [15]Tecplot 360 User Guide [16]黎世翔.“展弦比對具導緣突節翼形性能之影響.”國立成功大學系統及船舶機電工程學研究所碩士論文,民國九十九年七月,2010 [17]L.F. Richardson, “The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations with an Application to the Stresses in a Masonry Dam”, Transaction of Royal Society London, Vol. 210, pp. 307-357, 1910. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25919 | - |
| dc.description.abstract | 本文主要使用計算流體力學模擬探討突節外形的參數對翼前緣具突節之翼形的性能影響。以NACA0012做為主體翼形。本文針對不同的振幅、波長、翼展長度、突節個數進行計算解析,以了解各項參數變化時,對翼形性能之影響。使用週期性邊界探討波長與振幅的對於空氣動力性能的影響,以及在有限翼展下,分析波長、翼展長度、突節個數對於性能的影響統整不同展弦比下空氣動力性能的影響。計算結果顯示,無限翼展長度下;最大升力係數隨波長增加而增加。有限翼展長度下;固定展弦比,失速攻角、失速時升力係數、最大升力係數由流場可視化顯示,翼前緣波形突節翼形產生渦流增加動能向邊界層輸入能量,使氣流持續附著在升力面上保持層流狀態避免紊流產生,渦流動力供應維持或增加升力用以阻止失速,阻止氣流過早分離。 | zh_TW |
| dc.description.abstract | This study employs computational fluid dynamics (CFD) to investigate the effects of protuberances of varying geometric parameters on the performance of an airfoil with leading edge protuberances. The NACA 0012 airfoil is adopted as the baseline airfoil, and the geometric parameters are amplitude, wavelength, spanwise length, and number of protuberances.The results show that for an infinite wing, maximum lift coefficient increase with an increase in protuberance wavelength. For a finite wing, fixed aspect ratio, stall angle of attack, and stall lift coefficient all increase with the wavelength. As illustrated by flow visualizations, the leading edge protuberances generate vortices which impart kinetic energy to the boundary layer, such that the air remains attached to the suction surface of the wing, thereby maintaining laminar flow and avoiding turbulence. The kinetic energy from these vortices maintains or increases lift, and may be used to prevent stall by delaying separation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:57:03Z (GMT). No. of bitstreams: 1 ntu-100-R98525104-1.pdf: 6466627 bytes, checksum: 0c27ff431bc0f27ccbf7ac0d6cb23e88 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 i
摘要 i ABSTRACT ii 目 錄 iii 圖目錄 vi 表目錄 x 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的與方法 5 1.4 論文架構 7 第二章 翼形幾何外形 8 2.1 翼形幾何 8 2.2 翼形突節剖面幾何 9 第三章 計算條件與網格建立 14 3.1 統御方程式 14 3.2 紊流模型 15 3.3 壁函數 16 3.4 數值離散方法 18 3.5 計算條件 18 3.6 計算流程及參數設定 20 3.6.1 計算流程 20 3.6.2 參數設定 20 第四章 網格建構與獨立性測試 21 4.1 網格建構 21 4.1.1 第一類型網格製作及網格獨立性測試 21 4.1.2 第二類型網格製作及網格獨立性測試 26 4.2 邊界條件設定 30 第五章 計算結果 32 5.1 數值方法之驗證 32 5.2 計算結果 36 5.2.1 無限翼展長度之計算結果及討論 36 5.2.2 無限翼展長度之流場可視化分析 45 5.2.3 有限翼展長度之計算結果及討論 55 5.2.4 有限翼展長度之流場可視化分析 63 第六章 結論與未來展望 75 6.1 結論 75 6.2 未來展望 77 參考文獻 78 | |
| dc.language.iso | zh-TW | |
| dc.title | 具前緣突節翼形之氣動力性能模擬計算 | zh_TW |
| dc.title | Numerical Aerodynamic Performance Evaluation of Airfoil with Protuberances on Leading Edge | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙修武(Shiu-Wu Chau),王昭男(Chao-Nan Wang),陳景林(Ching-lin Chen) | |
| dc.subject.keyword | 翼形,翼前緣,突節,振幅,波長,展弦比,數值模擬, | zh_TW |
| dc.subject.keyword | airfoil,leading edge,protuberances,amplitude,wavelength,aspect ratio,numerical simulation, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 6.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
