請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25897
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳基旺 | |
dc.contributor.author | Chen-Ming Tan | en |
dc.contributor.author | 譚誠明 | zh_TW |
dc.date.accessioned | 2021-06-08T06:56:46Z | - |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-16 | |
dc.identifier.citation | Chapter 1
1. http://en.wikipedia.org/wiki/Inflammation 2. Hoffman, J. R; Ratamess, N. A. Medical issues associated with anabolic steroid use: are they exaggerated ? J. Sports Sci. Med. 2006, 5, 182-193. 3. http://www.drugs.com/top200.html 4. Khan, A. A.; Dionne, R. A. COX-2 inhibitors for endodontic Pain. Endod. Top. 2002, 3, 31-40. 5. Shtivelband, M. I.; Juneja, H. S.; Lee, S.; Wu, K. K. Aspirin and Salicylate inhibit colon cancer medium- and VEGF-induced endothelial tube formation: correlation with suppression of cyclooxygenase-2 expression. J. Thromb. Haemos. 2003, 1, 2225-2233. 6. Ranger, G. S.; Mokbel, K. COX-2 inhibition and breast cancer. ANZ J. Surg. 2003, 73, 565-566. 7. Seeram, N. P.; Zhang, Y.; Nair, M. G. Inhibition of proliferation of human cancer cells and cyclooxygenase enzymes by anthocyanidins and catechins. Nutr. Cancer 2003, 46, 101-106. 8. Thun, M. J.; Henley, S. J.; Patrono, C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J. Natl. Cancer Inst. 2002, 94, 252-266. 9. Hla, T.; Neilson, K.; Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. USA 1992, 89, 7384-7388. 10. Gossec, L.; van der Heijde, D.; Melian, A.; Krupa, D. A.; James, M. K.; Cavanaugh, P. F.; Reicin, A. S.; Dougados, M. Efficacy of cyclo-oxygenase-2 inhibition by etoricoxib and naproxen on the axial manifestations of ankylosing spondylitis in the presence of peripheral arthritis. Ann. Rheum. Dis. 2005, 64, 1563-1567. 11. Aisen, P. S. The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol. 2002, 1, 279-284. 12. Herrington, C.; Hall, P. Molecular and cellular themes in inflammation and immunology. J. Pathol. 2008, 214, 123-125. 13. Ushiyama, S.; Yamada T.; Murakami Y.; Kumakura S.; Inoue S.; Suzuki K.; Nakao A.; Kawara A.; Kimura T. Preclinical pharmacology profile of CS-706, a novel cyclooxygenase-2 selective inhibitor, with potent antinociceptive and anti-inflammatory effects. Eur. J. Pharmacol. 2008, 578, 76-86. 14. Goppelt-Struebe, M.; Schaefer, D.; Habenicht, A. J. Differential regulation of cyclo-oxygenase-2 and 5-lipoxygenase-activating protein (FLAP) expression by glucocorticoids in monocytic cells. Br. J. Pharmacol. 1997, 122, 619-624. 15. Burnett, B. P.; Jia, Q.; Zhao, Y.; Levy, R. M. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J. Med. Food 2007, 10, 442-451. 16. Simmons, D. L.; Botting, R. M.; Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387-437. 17. Mukherjee, D.; Nissen, S. E.; Topol, E. J. Risk of cardiovascular events associated with selective COX-2 inhibitors. J. Am. Med. Assoc. 2001, 286, 954-959. 18. Capone, M. L.; Tacconelli, S.; Francesco, L. D.; Petrelli, M.; Patrignani, P. Cardiovascular effects of valdecoxib: transducing human pharmacology results into clinical read-outs. Expert Opin. Drug Saf. 2008, 7, 29-42. 19. Farooq, M.; Haq, I.; Qureshi, A. S. Cardiovascular risks of COX inhibition: current perspectives. Expert Opin. Drug Saf. 2008, 9, 1311-1319. 20. Bunimov, N.; Laneuville, O. Cyclooxygenase inhibitors: instrumental drugs to understand cardiovascular homeostasis and arterial thrombosis. Cardiovasc. Hematol. Disord. Drug Targets 2008, 8, 268-277. 21. de Gaetano, G.; Donati, M. B.; Cerletti, C. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol. Sci. 2003, 24, 245-252. 22. Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J. P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann. Rheum. Dis. 2003, 62, 501-509. 23. Bayes, M.; Rabasseda, X. Gateways to clinical trials. Meth. Find. Exp. Clin. Pharmacol. 2008, 30, 67-99. 24. Kulkarni, S. K.; Singh, V. P. Licofelone: the answer to unmet needs in osteoarthritis therapy? Curr. Rheumatol. Rep. 2008, 10, 43-48. 25. Koeberle A.; Siemoneit U.; Buehring U. Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J. Pharmacol. Exp. Ther. 2008, 326, 975-982. 26. Geronikaki A.; Druzhilovsky D.; Zakharov A.; Poroikov V. Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J. Med. Chem. 2008, 51, 1601-1609. 27. Sud'ina, G. F.; Pushkareva, M. A.; Shephard, P.; Klein, T. Cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) selectivity of COX inhibitors. Prostaglandins Leukot. Essent. Fatty Acids 2008, 78, 99-108. 28. Caroline C.; Catherine M. Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem. 2003, 38, 645-659. Chapter 2 1. Fitzpatrick F, A. Cyclooxygenase enzymes: regulation and function. Curr. Pharm. Des. 2004, 10, 577-588. 2. McAdam, R. F.; Catella-Lawson, F.; Nardini, I. A.; Fitzgerald, G. A. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: The human pharmacology of a selective inhibitor of COX-2. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 272-277. 3. Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J-P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal antiinflammatory drugs. Ann. Rheum. Dis. 2003, 62, 501-509. 4. Kühn, H.; Belkner, J.; Wiesner, R.; Alder, L. Occurrence of 9- and 13-ketooctadecadienoic acid in biological membranes oxygenated by the reticulocyte lipoxygenase. Arch. Biochem. Biophys. 1990, 279, 218-224. 5. Kühn, H.; Thiele, B. J. The diversity of the lipoxygenase family: Many sequence data but little information on biological significance. FEBS Lett. 1999, 449, 7-11. 6. Takajo, T.; Tsuchida, K.; Ueno, K.; Koshiishi, I. Feedback activation of ferrous 5- lipoxygenase during leukotriene synthesis by coexisting linoleic acid. J. Lipid Res. 2007, 48, 1371-1377. 7. Julémont, F.; Dogné, J-M.; Laeckmann, D.; Pirotte, B.; de Leval, X. Recent developments in 5-lipoxygenase inhibitors. Expert Opin. Ther. Pat. 2003, 13, 1-13. 8. Lewis, R. A.; Austen, K. F.; Soberman, R. J. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Eng. J. Med. 1990, 323, 645-655. 9. Jampilek, J.; Dolezal, M.; Opletalova, V.; Hartl, J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006, 13,117-129. 10. Bertolini, A.; Ottani, A.; Sandrini, M.; Dual acting anti-inflammatory drugs: A reappraisal. Pharmacol. Res. 2001, 44, 437-450. 11. Leone, S.; Ottani, A.; Bertolini, A. Dual acting anti-inflammatory drugs. Curr. Top. Med. Chem. 2007, 7, 265-275. 12. Charlier, C.; Michaux, C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5- lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal antiinflammatory drugs. Eur. J. Med. Chem. 2003, 38, 645-659. 13. Samuelsson, B.; Funk, C. D. Enzymes involved in the biosynthesis of leukotriene B4. J. Biol. Chem. 1989, 264, 19469-19472. 14. Martel-Pelletier, J.; Mineau, F.; Fahmi, H.; Laufer, S.; Reboul, P.; Boileau, C.; Lavigne, M.; Pelletier, J. P. Regulation of the expression of 5-lipoxygenaseactivating protein-5-lipoxygenase and the synthesis of leukotriene B(4) in osteoarthritic chondrocytes: role of transforming growth factor beta and eicosanoids. Arthrits Rheum. 2004, 50, 3925-3933. 15. Kulkarni, S. K.; Singh, V. P. Positioning dual inhibitors in the treatment of pain and inflammatory disorders. Inflammopharmacology 2008, 16, 1-15. 16. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3- (trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem. 1997, 40, 1347-1365. 17. Prasit, P.; Wang, Z.; Brideau, C.; Chan, C. C.; Charleson, S.; Cromlish, W.; Ethier,D.; Evans, J. F.; Ford-Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser, M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.; O’Neill, G. P.; Ouellet, M.; Percival, M. D.; Perrier, H.; Riendeau, D.; Rodger, I.; Zamboni, R., et al. The discovery of rofecoxib, [MK 966, Vioxx, 4-(4'- methylsulfonylphenyl)-3-phenyl-2(5H)-furanone], an orally active cyclooxygenase-2-inhibitor. Bioorg. Med. Chem. Lett. 1999, 9, 1773-1778. 18. Talley, J. J.; Brown, D. L.; Carter, J. S.; Graneto, M. J.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W. E.; Rogers, R. S.; Shaffer, A. F.; Zhang, Y. Y.; Zweifel, B. S.; Seibert, K. 4-[5-Methyl-3-phenylisoxazol]4-yl]-benzenesulfonamide, valdecoxib: A potent and selective inhibitor of COX-2. J. Med. Chem. 2000, 43, 775-777. 19. Dogne, J. M.; Supuran, C. T.; Pratico, D. Adverse cardiovascular effects of the coxitis. J. Med. Chem. 2005, 48, 2251-2257. 20. Solomon, D. H. Selective cyclo-oxygenase 2 inhibitors and cardiovascular events. Arthritis Rheum. 2005, 52, 1968-1978. 21. FitzGerald, G. A. Coxibs and Cardiovascular Disease. N. Engl. J. Med. 2004, 351, 1709-1711. 22. Hudson, N.; Balsitis, M.; Everitt, S.; Hawkey, C. J. Enhanced gastric mucosal leukotriene B4 synthesis in patients taking non-steroidal anti-inflammatory drugs. Gut 1993, 34, 742-747. 23. Argentieri, D. C.; Ritchie, D. M.; Ferro, M. P.; Kirchner, T.; Wachter, M. P.; Anderson, D. W.; Rosenthale, M. E.; Capetola, R. J. Tepoxalin: A dual cyclooxygenase/5-lipoxygenase inhibitor of arachidonic acid metabolism with potent anti-inflammatory activity and a favorable gastrointestinal profile. J. Pharmacol. Exp. Ther. 1994, 271, 1399-1408. 24. Barbey, S.; Goossens, L.; Taverne, T.; Cornet, J.; Choesmel, V.; Rouaud, C.; Gimeno, G.; Yannic-Arnoult, S.; Michaux, C.; Charlier, C.; Houssin, R.;Henichart, J.-P. Synthesis and activity of a new methoxytetrahydropyran derivative as dual cyclooxygenase-2/5-lipoxygenase inhibitor. Bioorg. Med. Chem. Lett. 2002, 12, 779-782. 25. Marcouiller, P.; Pelletier, J. P.; Guevremont, M.; Martel-Pelletier, J.; Ranger, P.; Laufer, S.; Reboul, P. Leukotriene and prostaglandin synthesis pathways in osteoarthritic synovial membrane: regulating factors for interleukin 1beta synthesis. J. Rheumatol. 2005, 32, 704-712. 26. Chowdhury, M. A.; Abdellatif, K. R.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus, E. E. Synthesis of celecoxib analogues possessing a N-difluoromethyl-1,2- dihydropyrid-2-one 5-lipoxygenase pharmacophore: biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-Inflammatory activity J. Med. Chem. 2009, 52, 1525-1529. 27. Polito, F.; Bitto, A.; Irrera, N.; Squadrito, F.; Fazzari, C.; Minutoli, L.; Altavilla, D. Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis. Br. J. Pharmacol. 2010, 161, 1002-1011. 28. Young, R. N. Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized? Eur. J. Med. Chem. 1999, 34, 671-685. 29. Flower, R. J. The development of COX2 inhibitors. Nature Review Drug Discovery, 2003, 2, 179-191. 30. Sudha, K. N.; Shakira, M.; Prasanthi, P.; Sarika, N.; Kumar, C. N.; Babu, P. A. Virtual screening for novel COX-2 inhibitors using the ZINC database. Bioinformation 2008, 2, 325-329. 31. Zsoldos, Z.; Reid, D.; Simon, A.; Sadjad, S. B.; Johnson A. P. eHiTS: a new fast, exhaustive flexible ligand docking system. J. Mol. Graph. Model 2007, 26, 198- 212.32. Palomer, A.; Cabré, F.; Pascual, J.; Campos, J.; Trujillo, M. A.; Entrena, A.; Gallo, M. A.; Garcia, L.; Mauleón, D.; Espinosa, A. Identification of Novel Cyclooxygenase-2 Selective Inhibitors Using Pharmacophore Models. J. Med. Chem. 2002, 45, 1402-1411. 33. Sang, X.; Du, X. K.; Kadow, J. F. Benzo- and Azabenzodithiazole Compounds. U.S. Patents 7,087,621, 2006. 34. Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082. 35. Shoichet, B. K.; Stroud, R. M.; Santi, D. V.; Kuntz, I. D.; Perry, K. M. Structurebased discovery of inhibitors of thymidylate synthase. Science 1993, 259, 1445- 1450. 36. Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. A geometric approach to macromolecule- ligand interactions. J. Mol. Biol. 1982, 161, 269-288. 37. Chen, C.-S.; Tan, C.-M.; Huang, C.-H.; Chang, L.-C.; Wang, J.-P.; Cheng, F.-C.; Chern, J.-W. Discovery of 3-(4-bromophenyl)-6-nitrobenzo[1.3.2]dithiazolium ylide 1,1-dioxide as a novel dual cyclooxygenase/5-lipoxygenase inhibitor that also inhibits tumor necrosis factor-α production. Bioorg. Med. Chem. Lett. 2010, 18, 597-604. 38. Olah, G. A.; Wang, Q.; Sandford, G.; Prakash, G. K. S. Synthetic methods and reactions. 181. Iodination of deactivated aromatics with N-iodosuccinimide in trifluoromethanesulfonic acid (NIS-CF3SO3H) via in situ generated superelectrophilic iodine (I) trifluoromethanesulfonate. J. Org. Chem. 1993, 58, 3194-3195. 39. Jensen, A. E.; Knochel, P. Preparation of 2-arylated 1,4-phenylenediamines by palladium-catalyzed cross-coupling reactions. J. Organomet. Chem. 2002, 653, 122-128. Chapter 3 1. Nagai, Y.; Irie, A.; Nakamura, H.; Hino, K.; Uno, H.; Nishimura, H. Nonsteroidal antiinflammatory agents. 1. 10,11-Dihydro-11-oxodibenz[b,f]oxepinacetic acids and related compounds. J. Med. Chem. 1982, 25, 1065-1070. 2. Kaldor, S. W.; Kalish, V. J.; Davies, J. F. II,; Shetty, B. V.; Fritz, J. E.; Appelt, K.; Burgess, J. A.; Campanale, K. M.; Chirgadze, N. Y.; Clawson, D. K.; Dressman, B. A.; Hatch, S. D.; Khalil, D. A.; Kosa, M. B.; Lubbehusen, P. P.; Muesing, M.A.; Patick,A.K.; Reich, S. H.; Su, K. S.; Tatlock, J. H. Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J. Med. Chem. 1997, 40, 3979-3985. 3. Wang, Y.; Chackalamannil, S.; Hu, Z.; Clader, J.W.; Greenlee, W.; Billard,W.; Binch, H. III; Crosby, G.; Ruperto, V.; Duffy, R.;McQuade, R.; Lachowicz, J. E. Design and synthesis of piperidinyl piperidine analogues as potent and selective M2 muscarinic receptor antagonists. Bioorg. Med. Chem. Lett. 2000, 10, 2247-2250. 4. Liu, G.; Link, J. T.; Pei, Z.; Reilly, E. B.; Leitza, S.; Nguyen, B.; Marsh, K. C.; Okasinski, G. F.; Geldern, T. W.; Ormes, M.; Fowler, K.; Gallatin, M. Identification of an additional binding pocket based on an anilino diaryl sulfide lead. J. Med. Chem. 2000, 43, 4025-4040. 5. Kenny, J. R.; Maggs, J. L.; Tettey, J. N. A.; Harrel, A.W.; Parker, S. G.; Clarke, S. E.; Park, B. K. Formation and protein binding of the acyl glucuronide of a leukotriene B4 antagonist (SB-209247): Relation to species differences in hepatotoxicity. Drug Metab. Dispos. 2005, 33, 271-281. 6. Marson, C. M.; Savy, P.; Rioja, A. S.; Mahadevan, T.;Mikol, C.; Veerupillai, A.; Nsubuga, E.; Chahwan, A.; Joel, S. P. Aromatic sulfide inhibitors of histone deacetylase based on arylsulfinyl-2,4-hexadienoic acid hydroxyamides. J. Med.Chem. 2006, 49, 800-805. 7. Hardouin, C.; Kelso, M. J.; Romero, F. A.; Rayl, T. J.; Leung, D.; Hwang, I.; Cravatt, B. F.; Boger, D. L. Structure-activity relationships of alpha-ketooxazole inhibitors of fatty acid amide hydrolase. J. Med. Chem. 2007, 50, 3359-3368. 8. Rodriguez, F.; Rozas, I.; Ortega, J. E.; Meana, J. J.; Callado, L. F. Guanidine and 2- aminoimidazoline aromatic derivatives as α2-adrenoceptor antagonists, 1: toward new antidepressants with heteroatomic linkers. J. Med. Chem. 2007, 50, 4516-4527. 9. Samant, M. P.; White, R.; Hong, D. J.; Croston, G.; Conn, P. M.; Janovick, J. A.; Rivier, J. Structure-activity relationship studies of gonadotropin-releasing hormone antagonists containing S-aryl/alkyl norcysteines and their oxidized derivatives. J. Med. Chem. 2007, 50, 2067-2077. 10. Rayner, C. M. Thiols, sulfides, sulfoxides, and sulfones. Contemp. Org. Synth. 1994, 1, 191-203. 11. Rayner, C. M. Synthesis of thiols, sulfides, sulfoxides and sulfones. Contemp. Org. Synth. 1995, 2, 409-440. 12. Rayner, C. M. Synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. Contemp. Org. Synth. 1996, 3, 499-533. 13. Yao, H.; Richardson, D. E. Bicarbonate surfoxidants: micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide. J. Am. Chem. Soc. 2003, 125, 6211-6221. 14. Baird, C. P.; Rayner, C. M. Synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. J. Chem. Soc., Perkin Trans. 1 1998, 1973-2003. 15. Procter, D. J. The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. J. Chem. Soc., Perkin Trans.1 1999, 641-667. 16. Procter, D. J. The synthesis of thiols, selenols, sulfides, selenides, sulfoxides,selenoxides, sulfones and selenones. J. Chem. Soc., Perkin Trans. 1 2000, 835-871. 17. Procter, D. J. The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones. J. Chem. Soc., Perkin Trans. 1 2001, 335- 354. 18. Lindley, J. Copper assisted nucleophilic substitution of aryl halogen. Tetrahedron 1984, 40, 1433-1456. 19. Bates, C. G.; Gujadhur R. K.; Venkataraman, D. A general method for the formation of aryl-sulfur bonds using copper(I) catalysts. Org. Lett. 2002, 4, 2803- 2806. 20. Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Copper-catalyzed coupling of alkylamines and aryl iodides: An efficient system even in an air atmosphere. Org. Lett. 2002, 4, 581-584. 21. Migita, T.; Shimizu, T.; Asami, Y.; Shiobara, J.-I.; Kato, Y.; Kosugi, M. The palladium catalyzed nucleophilic substitution of aryl halides by thiolate anions. Bull. Chem. Soc. Jpn. 1980, 53, 1385-1389. 22. Fernández-Rodríguez, M. A.; Shen, Q.; Hartwig, J. F. A general and long-lived catalyst for the palladium-catalyzed coupling of aryl halides with thiols. J. Am. Chem. Soc. 2006, 128, 2180-2181. 23. Murata, M.; Buchwald, S. L. A general and efficient method for the palladiumcatalyzed cross-coupling of thiols and secondary phosphines. Tetrahedron 2004, 60, 7397-7403. 24. Wong, Y.-C.; Jayanth, T. T.; Cheng, C.-H. Cobalt-catalyzed aryl-sulfur bond formation. Org. Lett. 2006, 8, 5613-5616. 25. Taniguchi, N. Alkyl- or arylthiolation of aryl iodide via cleavage of the S-S bond of disulfide compound by nickel catalyst and zinc. J. Org. Chem. 2004, 69, 6904- 6906. 26. Chen, Y.-J.; Chen, H.-H. 1,1,1-Tris(hydroxymethyl)ethane as a new, efficient, andversatile tripod ligand for copper-catalyzed cross-coupling reactions of aryl iodides with amides, thiols, and phenols. Org. Lett. 2006, 8, 5609-5612. 27. Lohmann, S.; Andrews, S. P.; Burke, B. J.; Smith, M. D.; Attifield, J. P.; Tanaka, H.; Kaneko, K.; Ley, S. V. Versatile and fluoride-free cyanation of alkyl halides and sulfonates with trimethylsilyl cyanide. Synlett 2005, 8, 1291-1295. 28. Itoh, T.; Mase, T. A general palladium-catalyzed coupling of aryl bromides/triflates and thiols. Org. Lett. 2004, 6, 4587-4590. 29. Deng, W.; Zou, Y.; Wang, Y.-F.; Liu, L.; Guo, Q.-X. CuI-catalyzed coupling reactions of aryl iodides and bromides with thiols promoted by amino acid ligands. Synlett 2004, 7, 1254-1258. 30. Larhed, M.; Moberg, C.; Hallberg, A. Microwave-accelerated homogeneous catalysis in organic chemistry. Acc. Chem. Res. 2002, 35, 717-727. 31. Wu, Y.-J.; He, H. Copper-catalyzed cross-coupling of aryl halides and thiols using microwave heating. Synlett 2003, 12, 1789-1790. 32. Bagley, M. C.; Dix, M. C.; Fusillo, V. Rapid Ullmann-type synthesis of aryl sulfides using a copper(I) catalyst and ligand under microwave irradiation. Tetrahedron Lett. 2009, 50, 3661-3664. 33. Rout, L.; Saha, P.; Jammi, S.; Punniyamurthy, T. Efficient copper(I)-catalyzed CS cross coupling of thiols with aryl halides in water. Eur. J. Org. Chem. 2008, 640- 643. 34. (a) Sperotto, E.; van Klink, K. P. M.; de Vries, J. G.; van Koten, G. Ligand-free copper-catalyzed C-S coupling of aryl iodides and thiols. J. Org. Chem. 2008, 73, 5625-5628. (b) Xu, H.-J.; Zhao, X.-Y.; Fu, Y.; Feng, Y.-S. Ligand-free C-S bond formation catalyzed by copper (I) oxide, Synlett. 2008, 3063-3067. (c) Xu, H.-J.; Zhao, X.-Y.; Deng, J.; Fu, Y.; Feng, Y.-S. Efficient C-S cross coupling catalyzed by Cu2O. Tetrahedron Lett. 2009, 50, 434-437.35. Jammi, S.; Barua, P.; Rout, L.; Saha, P.; Punniyamurthy, T. Efficient ligand-free nickel catalyzed C-S cross coupling of thiols with aryl halides. Tetrahedron Lett. 2008, 49, 1484-1487. 36. Rábai, J.; Kapovits, I.; Jalsovszky, I.; Argay, Gy.; Fülöp, V.; Kálmán, A.; Koritsánszky, T. Molecular structures of cyclic sulfilimines without and with intramolecular sulfur-oxygen interaction: an X-ray study. J. Mol. Struct. 1996, 382, 13-21. 37. Kornblum, N.; Cheng, L.; Kerber, R. C.; Kestner, M. K.; Newton, B. N.; Pinnick, H. W.; Smith, R. G.;Wade, P. A. Displacement of the nitro group of substituted nitrobenzenes-a synthetically useful process. J. Org. Chem. 1976, 41, 1560-1564. 38. Kaplan, L. J.; Martin, J. C. Sulfuranes. IX. Sulfuranyl substituent parameters. Substituent effects on the reactivity of dialkoxydiarylsulfuranes in the dehydration of alcohols. J. Am. Chem. Soc. 1973, 95, 793-798. 39. Takeuchi, H.; Hiyama, T.; Kamaia, N.; Oya, H. Novel efficient aromatic arylthiolation by disulfide radical cations generated by oxidation of diaryl disulfides. J. Chem. Soc., Perkin Trans. 2 1997, 2301-2306. 40. Taniguchi, N. Mono- or dichalcogenation of aryl iodide with sulfur or selenium by copper catalyst and aluminum. Synlett 2005, 11, 1687-1690. 41. Qian, D.-Q.; Liu, B.; Shine, H. J.; Guzman-Jimenez, I, Y.; Whitmire, K. H. Ringopening reactions of 5-(aryl)thianthrenium bromides with aryl thiolates. J. Physi. Org. Chem. 2002, 15, 139-147. 42. Granoth, I. Deoxygenation of aromatic sulphoxides by thionyl chloride in the presence of cyclohexene. Synthesis of substituted phenoxathiins. J. Chem. Soc. Perkin Trans. I 1974, 2166-2168. 43. Burger, A.; Stanmyer, J. L. Chlorinated o-dimethylaminopropylaminodiphenyl sulfide derivatives. J. Org. Chem. 1956, 21, 1382-1385.44. De Benedetti, P. G.; Iarossi, D.; Menziani, C.; Caiolfa, V.; Frassineti, C.; Cennamo, C. Quantitative structure-activity analysis in dihydropteroate synthase inhibition of sulfones. Comparison with sulfanilamides. J. Med. Chem. 1987, 30, 459-464. Chapter 4 1. Hla, T.; Neilson, K. Human cyclooxygenase-2 cDNA. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 7384-7388. 2. Cryer, B.; Feldman, M. Cyclooxygenase-1 and cyclooxygenase-2 selectivity of widely used nonsteroidal anti-inflammatory drugs. Am. J. Med. 1998, 104, 413-421. 3. Penning, T. D.;Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3- (trifluoromethyl)-1H-pyrazol-1-yl]benze nesulfonamide (SC-58635, celecoxib). J. Med. Chem. 1997, 40, 1347-1365. 4. Carter, J. S. Recently reported inhibitors of cyclooxygenase-2. Exp. Opin. Ther. Pat. 1998, 13, 21-29. 5. Rahim, M. A.; Rao, P. N. P.; Knaus,E. E. Isomeric acetoxy analogues of rofecoxib: a novel class of highly potent and selective cyclooxygenase-2 inhibitors. Bioorg. Med. Chem. Lett. 2002, 12, 2753-2756. 6. Dogne, J. M.; Supuran, C. T.; Pratico, D. Adverse cardiovascular effects of the coxitis. J. Med. Chem. 2005, 48, 2251-2257. 7. Solomon, D. H. Selective cyclo-oxygenase 2 inhibitors and cardiovascular events. Arthritis Rheum. 2005, 52, 1968-1978. 8. McAdam, R. F.; Catella-Lawson, F.; Nardini, I. A.; Fitzgerald, G. A. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: The humanpharmacology of a selective inhibitor of COX-2. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 272-277. 9. Jampilek, J.; Dolezal, M.; Opletalova, V.; Hartl, J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006, 13, 117-129. 10. Argentieri, D. C.; Ritchie, D. M.; Ferro, M. P.; Kirchner, T.; Wachter, M. P.;Anderson, D. W.; Rosenthale, M. E.; Capetola, R. J. Tepoxalin: A dual cyclooxygenase/5-lipoxygenase inhibitor of arachidonic acid metabolism with potent anti-inflammatory activity and a favorable gastrointestinal profile. J. Pharmacol. Exp. Ther. 1994, 271,1399-1408. 11. Barbey, S.; Goossens, L.; Taverne, T.; Cornet, J.; Choesmel, V.; Rouaud, C.; Gimeno, G.; Yannic-Arnoult, S.; Michaux, C.; Charlier, C.; Houssin, R.; Henichart, J.-P. Synthesis and activity of a new methoxytetrahydropyran derivative as dual cyclooxygenase-2/5-lipoxygenase inhibitor. Bioorg. Med. Chem. Lett. 2002, 12, 779-782. 12. Bertolini, A.; Ottani, A.; Sandrini, M. Dual acting anti-inflammatory drugs: A reappraisal. Pharmacol. Res. 2001, 44, 437-450. 13. Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y.; Das, D.; Suresh, M. R.; Knaus, E. E. Synthesis of celecoxib analogues possessing a N-difluoromethyl- 1,2-dihydropyrid-2-one 5-lipoxygenase pharmacophore: biological evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-Inflammatory activity. J. Med. Chem. 2009, 52, 1525-1529. 14. Polito, F.; Bitto, A.; Irrera, N.; Squadrito, F.; Fazzari, C.; Minutoli, L.; Altavilla, D. Flavocoxid, a dual inhibitor of cyclooxygenase-2 and 5-lipoxygenase, reduces pancreatic damage in an experimental model of acute pancreatitis. Br. J. Pharmacol. 2010, 161, 1002-1011.15. Young, R. N. Inhibitors of 5-lipoxygenase: a therapeutic potential yet to be fully realized? Eur. J. Med. Chem. 1999, 34, 671-685. 16. Charlier, C.; Michaux, C. Dual inhibition of cyclooxygenase-2 (COX-2) and 5- lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal antiinflammatory drugs. Eur. J. Med. Chem. 2003, 38, 645-659. 17. Chen,C.-S.; Tan, C.-M.; Huang, C.-H.; Chang, L.-C.; Wang, J.-P.; Cheng, F.-C.; Chern, J.-W. Discovery of 3-(4-bromophenyl)-6-nitrobenzo[1.3.2]dithiazolium ylide 1,1-dioxide as a novel dual cyclooxygenase/5-lipoxygenase inhibitor that also inhibits tumor necrosis factor-α production. Bioorg. Med. Chem. Lett. 2010, 18, 597-604. 18. Rábai, J.;Kapovits, I.; Jalsovszky, I.; Argay, G.; Fülöp, V.; Kálmán, A.; Koritsánszky, T. Molecular structures of cyclic sulfilimines without and with intramolecular sulfur-oxygen interaction: an X-ray study. J. Mol. Struct. 1996, 382, 13-21. 19. Tan, C.-M.; Chen, G. S.; Chen, C.-S.; Chern, J.-W. Microwave-assisted crosscoupling for the construction of diaryl sulfides. J. Chin. Chem. Soc. 2011, 58, 94- 100. 20. Jensen, A. E.; Knochel, P. Preparation of 2-arylated 1,4-phenylenediamines by palladium-catalyzed cross-coupling reactions. J. Organomet. Chem. 2002, 653, 122-128. 21. Li, Z.; Wu, Z.; Luo, F. Synthesis and antifungal activities of alkyl N-(1,2,3- thiadiazole-4-carbonyl) carbamates and S-alkyl N-(1,2,3-thiadiazole-4-carbonyl) carbamothioates. J. Agric. Food Chem. 2005, 53, 3872-3876. 22. Crawley, G. C.; Dowell, R. I.; Edwards, P. N.; Foster, S. J.; McMillan, R. M.; Walker, E. R. H.; Waterson, D.; Bird, T. G. C.; Bruneau, P.; Girodeau, J. M.Methoxytetrahydropyrans. A new series of selective and orally potent 5- lipoxygenase inhibitors. J. Med. Chem. 1992, 35, 2600-2609. 23. Boschelli, D. H.; Connor, D. T.; Kuiperss, P. J.; Wright, C. D. Synthesis and cyclooxygenase and 5-lipoxygenase inhibitory activity of some thiazolidene-4-one analogs of meclofenamic acid. Bioorg. Med. Chem. Lett. 1992, 2, 705-708. 24. Anana, R.; Rao, P. N. P.; Chen, Q.-H.; Knaus, E. E. Synthesis and biological evaluation of linear phenylethynylbenzenesulfonamide regioisomers as cyclooxygenase-1/-2 (COX-1/-2) inhibitors. Bioorg. Med. Chem. 2006, 14, 5259- 5265. 25. Boggiano, B. G.; Condon, S.; Davies, M. T.; Jackman, G. B.; Overell, B. G.; Petrow, V.; Stephenson, O.; Wild, A. M. Studies in the field of diuretic drugs. Part II. 5-Chloro-2,4-disulphamyltoluene (Disulphamide). J. Pharm. Pharmacol. 1960, 12, 419-425. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25897 | - |
dc.description.abstract | 新穎的第二型環氧化酶(COX-2)與第五型脂氧合酶(5-LOX)雙效抑制劑具有重大的發展潛力,所以本研究之初步結果以化合物6為基礎,合成了一系列1,1-二氧化苯駢[1.3.2]二噻唑亞烷衍生物。在製備這類化合物的過程中,合成雙芳香基硫化物的耦合反應以及最後的環化反應是所有最終產物的必經步驟,而本研究中也固定以這些方法當作標準合成程序。
本研究初期曾針對COX-2的結構進行虛擬篩選,並挑中化合物7以作為預設標的物,不料後續研究卻間接確認化合物6才具有抑制COX-2的活性,而且發現化合物6也能夠抑制5-LOX。根據化合物6與COX-2活性區的對接模型﹙docking model﹚所顯示,對化合物6進行優化時應保留化合物與酵素活性區之間的重要作用力,所以研究中針對NO2、SO2NH2、SO2CH3以及羧酸衍生物等多種位於第5或第6位的氫鍵接受體加以探討,並依序觀察不同芳香性基團接在第3位硫原子上的差異;研究中發現,若是要對第二型環氧化酶與第五型脂氧合酶產生抑制作用,6-NO2基團是必要的取代基。在這些化合物之中,具有COX-2/5-LOX雙效抑制能力的化合物都有相同的特徵:3-芳香性基團上的取代基屬於中等體積的親脂性基團,其中含有3-(4-三級丁基苯基)取代基的化合物具有最強效的COX-2抑制能力(IC50 = 0.27 μM),而含有3-(4-聯苯基)取代基的化合物則具有最強效的5-LOX抑制能力(IC50 = 0.15 μM)。但是,與化合物7類似的化合物8則無法對COX-2或5-LOX產生抑制作用。 除了酵素抑制活性之外,在動物實驗中以100 mg/kg的劑量採取腹腔注射給藥之後可以發現,同時帶有3-(4-三級丁基苯基)與6-硝基取代基的1,1-二氧化苯駢[1.3.2]二噻唑亞烷能夠產生顯著的快速消炎作用。根據本研究的結果顯示,在開發第二型環氧化酶與第五型脂氧合酶雙效型抑制劑的時候,可以採用1,1-二氧化苯駢[1.3.2]二噻唑亞烷衍生物作為新穎的架構,並以這類雙效型抑制劑作為開發抗發炎藥物時的參考。 藉由微波加速反應與縮短反應時間的特性,可以進一步提升合成雙芳香基硫化物的效能,並且簡化反應後的處理程序;因為雙芳香基硫化物是1,1-二氧化苯駢[1.3.2]二噻唑亞烷的前驅物,所以微波加熱有助於改善本系列化合物的產率。跟傳統的加熱方法比較起來,只要使用微波輔助的耦合反應,就可以在溫和的條件下合成出多樣化的雙芳香基硫化物,而且產率都能達到94%以上。在合成各種1,1-二氧化苯駢[1.3.2]二噻唑亞烷衍生物的過程中,必須要使用反應性較低的分子以及高極性的試劑,而微波加熱方式讓這些反應得以順利進行。 | zh_TW |
dc.description.abstract | According to our preliminary discovery of compound 6, a series of benzo[1.3.2]dithiazolium ylide 1,1-dioxide derivatives were designed and synthesized for the development of new prototype dual inhibitors of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX). To synthesize these derivatives, cross-coupling of diaryl sulfides and ring closure reaction were taken as fundamental and standardized steps.
Compound 7 was initially believed as a virtual hit through the COX-2 structure-based virtual screening, however, compound 6 was indirectely identified as a selective COX-2 inhibitor, which also exhibited 5-LOX inhibition. With an attempt to optimize compound 6, docking model of compound 6 in the active site of COX-2 was considered. To maintain these important interactions between compound 6 and COX-2, versatile hydrogen bonding acceptors such as NO2, SO2NH2, SO2CH3 and certain carboxylic acid derivatives at the 5- or 6- position of benzo[1.3.2]dithiazolium ylide scaffold together with different aryl moieties on the sulfur atom at the 3-position were stepwisely investigated. Meanwhile, the 6-NO2 group was revealed to play an essential role in the inhibition of COX-2 and 5-LOX. Regard to the overall efficacy among them, compounds with lipophilic groups of proper bulkiness on the 3-aryl moiety provided evident dual COX-2/5-LOX inhibitory activity. The compound with 3-(4-tbutylphenyl) substituent was illustrated to be the most potent COX-2 inhibitor (IC50 = 0.27 μM), and the compound with 3-(4-biphenyl) substituent, was the most potent 5-LOX inhibitor (IC50 = 0.15 μM). Unfortunately, compound 8 analogous to 7 was inactive in inhibiting neither COX-2 nor 5-LOX. In addition to enzyme-inhibiting studies, intraperitoneal administration of 3-(4-tert-butylphenyl)-6-nitrobenzo[1.3.2]dithiazolium ylide 1,1-dioxide at 100 mg/kg gave significant acute anti-inflammatory activity. Benzo[1.3.2]dithiazolium ylide 1,1-dioxide derivatives herein represented a novel scaffold for the exploitation of dual COX-2/5-LOX inhibitors, which may be useful in the construction of new anti-inflammatory agents. With the assistance of microwave irradiation on the improvement of reaction yields, the synthesis of diaryl sulfides as precursors of benzo[1.3.2]dithiazolium ylide 1,1-dioxide became more feasible in shortening the reaction time and simplifying the post-treatment of reactions. Compared to a conventional heating system, microwave-assisted cross-coupling helped a variety of diaryl sulfides be prepared in a mild condition and in excellent yields, greater than 94%. The application of microwave-assisted synthesis to deactivated reagents and polar systems facilitated the construction of miscellaneous benzo[1.3.2]dithiazolium ylide 1,1-dioxide derivatives. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:56:46Z (GMT). No. of bitstreams: 1 ntu-100-D91423001-1.pdf: 15745648 bytes, checksum: 99250485975789981c183ae9a1facba8 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Table of contents
中文摘要………….........................................................................................................i Abstract…………………………………...…………………………………………..iii List of Schemes………………………...…………………………………….……….vi List of Tables……………………………………………...………………………….vii List of Figures……………………………………...………………………………..viii Chapter 1 Introduction Background………………..………..…………………………………………..1 References…………………….………..……………………………………….8 Chapter 2 Discovery of 3-(4-bromophenyl)-6-nitrobenzo[1.3.2] dithiazolium ylide 1,1-dioxide as a novel dual cyclooxygenase/5-lipoxygenase inhibitor 2.1 Introduction………………………………………………...……………...11 2.2 Discovery of of 3-(4-bromophenyl)-6-nitrobenzo[1.3.2] dithiazolium ylide 1,1-dioxide via virtual screening…………………………………………..15 2.3 Results and discussion………….………………………………………….23 2.4 Summary…...………………………………………..…………………….31 2.5 Experimental section………………..……………………………………..32 2.6 References………………………………………...……………………….41 Chapter 3 Microwave-assisted cross-coupling for the construction of diaryl sulfides 3.1 Introduction………………………………………………………………..46 3.2 Results and discussion…………………………..…………………………49 3.3 Summary…………………………………………………..………………55 3.4 Experimental section…………………………………………………..…..56 3.5 References……………………………………………………………...….64 Chapter 4 Design, synthesis and biological evaluation of benzo[1.3.2]dithiazolium ylide 1,1-dioxide derivatives as potential dual cyclooxygenase-2/5-lipoxygenase inhibitors 4.1 Introduction…………………………………………………………….….70 4.2 Rational design…………………………………………………………….72 4.3 Results and discussion………………………………………………….….74 4.4 Summary………………………………………………………………..…87 4.5 Experimental section……………………………………………………....88 4.6 References………………………………………………………………..126 Chapter 5 Conclusion……………………………………………………………….130 Chapter 6 Appendix…………………………………………………………………131 | |
dc.language.iso | en | |
dc.title | 1,1-二氧化苯駢[1.3.2]二噻唑亞烷衍生物作為第二型環氧化酶
與第五型脂氧合酶雙效抑制劑之設計、合成與活性評估 | zh_TW |
dc.title | Design, Synthesis and Biological Evaluation of
Benzo[1.3.2]dithiazolium Ylide 1,1-Dioxide Derivatives as Dual Cyclooxygenase-2/5-Lipoxygenase Inhibitors | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王光昭,顧記華,忻凌偉,陳香惠 | |
dc.subject.keyword | 第二型環氧化酶,第五型脂氧合酶,1,1-二氧化苯駢[1.3.2]二噻,唑亞烷,雙芳香基硫化物, | zh_TW |
dc.subject.keyword | cyclooxygenase-2,5-lipoxygenase,benzo[1.3.2]dithiazolium ylide 1,1-dioxide,diaryl sulfides, | en |
dc.relation.page | 152 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-16 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥學研究所 | zh_TW |
顯示於系所單位: | 藥學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 15.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。