請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25884完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王維新(Way-Seen Wang) | |
| dc.contributor.author | Isatou Dibba | en |
| dc.contributor.author | 狄芭 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:56:37Z | - |
| dc.date.copyright | 2009-07-27 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-23 | |
| dc.identifier.citation | [1] Soldano, L. B., & Pennings, C. M. (1995). Optical multi-mode interference devices based on self imaging: Principles and applications. Journal of Lightwave Technology, 13 (4), 615-637
[2] Ando, T., Nakano, H., & Yamauchi, J. (1993). Analysis of 1 x 3 coupled-waveguide optical power dividers by the finite-difference method. Electronics and Communications in Japan, Part 2, 76 (5), 35-44 [3] Chen, K. Y., & Wang, W. S. (2007). Fabrication and characterization of benzocyclobutene optical waveguides by UV pulse-laser illumination. IEEE Journal of Quantum Electronics, 43 (4), 303-310 [4] Straat, A., & Nikolajeff, F. (2001). Study of benzocyclobutene as an optical material at elevated temperatures. Applied Optics, 40 (29), 5147-5151 [5] Webster, J. R. (1998). Thin film polymer dielectrics for high-voltage applications under severe environments. Thesis: Virginia Polytechnic Institute and State University. [6] Fabrication of Benzocyclobutene Multimode Interference Devices by Ultraviolet Laser Illuminations. Thesis 2008. National Taiwan University .Graduate Institute of Photonics and Optoelectronics. [7] DOW Chemical Japan Limited. (1999). Low dielectric constant materials. Journal of Photopolymer Science and Technology, 12 (2), 189-191 [8] He, J., Lee, K., & Massia, S. (2005). Biocompatible benzocyclobutene-based intracortical neutral implant with surface modification. Journal of Micromechanics and Microengineering, 15 (2005) 2149-2155 [9] Dow Chemical Company http://www.dow.com/cyclotene [10] BeamPROP™ 5.1.1 User Guide [11] Kane, C. F., & Krchnavek, R. R. (1995). Benzocyclobutene Optical waveguides. IEEE Photonics Technology Letters 7 (5), 535-537 [12] Adema, G. M., Berry, M. J., Dibbs, M. G., Garrou, P. E., Heistand, R. H., Mainal, T. A., Mohler, C. E., Stokich, T. M., Townsend, P. H., & Turlik, I. (1993). Rapid thermal curing of BCB dielectric. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 16 (1) 46-52 [13] Keh-Yei Lee,Wei-chih Tsai, Fu-Chiang Chang,Kuo-Chang Lo, Yu-Jen Lin. Design of1x3 MMI optical power dividers with rectangular waveguide cores based on silica substrate. Journal of optical communications 25 (2004) 4, 152- 154. [14] Lu, H. C., & Wang, W. S. (2006). Wideband criterion for multimode interference splitters. IEEE Photonics Technology Letters, 18 (22), 2332-2334 [15] DOW Chemical Company. (2005). Cyclotene 4000 series advanced electronic resin (photo BCB). Processing Procedures for Cyclotene 4000 Series Photo BCB Resins DS2100 Puddle Develop Process. [16] Bogenberger, R., Guttmann, J., Huber, H. P., Krumpholz, O., Kuhn, K. P., Moisel, J., & Rode, M. (2000). Optical backplanes with integrated polymer waveguides. Society of Photo-Optical Instrumentation Engineers, 39 (3) 673-679 [17] P.Ganguly, J.C.Biswas, S.Das, S.K.Lahiri. a three- waveguide polarization independent power splitter on a lithium niobate substrate. Optics communications 168(1999) 349-354. [18] Geshiro, M., Minami, N., Sawa, S., & Yabu, T. (1999). Symmetric three-branch optical power divider with coupling gap. Journal of Lightwave Technology, 17 (9), 1693-1699 [19] Jianwei Mu, Chenglin Xu, and Wei-Ping Huang. An optical power combiner/wavelength demultiplexing module for hybrid WDMFTTX. 16 March 2009 /Vol.17,No.6/optics express 4791 [20] Bachmann., Besse, P. A., Gini, E., & Melchior, H. (1996). New 2x2 and 1x3 multimode interference couplers/splitters with a free selection of power splitting ratios [21] DOW Chemical Company. (2001). Cyclotene advanced electronic resin technical processing guide for flat panel display applications. File: XU71918.30, Midland, Michigan 48674 [22] R.TH.Kersten. The prism-film coupler as a precision instrument PartI. Accuracy and Capability of prism coupler as instruments. Journal of modern optics. optica acta,1975, Vol.22, No.6, 503-513. [23] Huang, W. P., Xu, C., & Mu J. (2009). An optical power combiner/wavelength demultiplexing module for hybrid WDM FTTX. Optics Express, 17 (6), 4791-4797 [25]Toa Liu,Armis R. Zakharian, Mahmoud Fallahi,Jerome V. Moloney, and Masud Mansuripur. Multimode Interference –Based Photonics Crystal Waveguide Power Splitter.Journal of light waev Technology Vol.22. No.12. December 2004. 2842-2846. [26] Yip, C. S. ((2004). Design and fabrication of polarization-insensitive polymer optical waveguide devices. Thesis: City University of Hong Kong. [27] Ghalichechechian, N., Ghodssi, R., Kleber, B., & Modafe, A. (2004). Electrical characterization of benzocyclobutene polymers for electric micromachines. IEEE Transactions on Device and Materials Reliability, 4 (3), 495-508 [28] DOW Chemical Company. (2005). Cyclotene 3000 Series advance electronic resins. Rework Procedures for Cyclotene 3000 Series Dry Etch Resins. [29] DOW Chemical Company. (2005). Cyclotene advance electronic resins. Rework Procedures for Cyclotene 3000 Series and 4000 Series Resins. [30] Hunsperger, R. G. (2002). Integrated Optics: Theory and Technology. Lightning Source UK Limited, London, United Kingdom [31] Chin, M. K., Ibrahim, M. H., Kassim, N. M., Lee, S. Y., & Mohammad, A. B. (2006). Polymeric optical splitter based on multimode interference mechanism. Student conference on research and development, Shah Alam, Selangor, Malaysia Selviah, D. R. (2007). Source misalignment in multimode polymer tapered waveguides for optical backplanes. Optical Engineering 46 (1), 015401-1-015401-7 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25884 | - |
| dc.description.abstract | 本論文探討4種1×3多模干涉光功率分離器,並從中選出兩種以高分子材料來製作。其中一種是1×3長方形的多模干涉器,而另一種是梯形結合長方形的多模干涉器。波導圖案係以紫外光雷射照射法來製作,即以波長248nm雷射照射,穿過石英光罩到達鍍有苯並環丁烯的矽晶片。波導寬度設定為7µm,多模干涉區寬度為60µm,兩個多模干涉器之折射率差皆設定為0.0027。結果顯示長度為1500µm 時的長方形分離器效果最好,其不等分率為1.02 dB,傳輸率為90.85 %。在相同長度下,另一個多模干涉器的不等分率為2.85 dB,傳輸率為92.66 %,後者傳輸率較前者高。本研究目的就是希望得到較高的傳輸率及均勻的輸出能量分布。雖然很多研究都以1×2N(N為偶數)為主,但本實驗結果顯示1×N(N 為奇數)仍會有好的表現。本研究不僅實驗上有較高的傳輸率結果,在模擬上也得到一樣的證明。 | zh_TW |
| dc.description.abstract | Four 1×3 multimode interference (MMI) optical power splitters were designed but only two out of the four 1×3 multimode interference (MMI) optical power splitters were
fabricated. One of the fabricated devices is the 1×3 buried-type rectangular MMI section and the other one is a 1×3 linearly tapered input MMI section optical power splitters. The ultraviolet laser light illumination process was used to develop waveguide patterns on benzocyclobutene (BCB).coated silicon substrate. The laser source of 248nm is illuminated through the quartz mask to the BCB polymer wafer. The device is designed to have an input waveguide of 7μm wide and the central part or the MMI section is 60μm wide and of course three single mode waveguide outputs each as wide as the input waveguide. A refractive index change of 0.0027 was used for the design of both devices. The best 1The best 1×3 with a rectangular MMI section at an MMI length of 1500µm will exhibit an imbalance of 1.02dB and total transmission output of 90.85%. The best 1×3 linearly tapered input MMI section will give an imbalance of 2.85dB and a total transmission output of 92.66%. By tapering the input portion of the MMI section of the optical power splitter the transmission can be improved. This can be proved by comparing the results obtained from the two 1×3 MMI optical power splitters. The aim of this research is to obtain a better transmission for the 1×3 MMI power splitters and also to obtain a fair power distribution. Since 1×N (with N being odd) cannot easily perform the later reason many researchers are focused on the fabrication of 1×2N (where N is an even number). This research was able to achieve an experimental result that agrees very well with the simulation results that is, to obtain a higher output transmission. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:56:37Z (GMT). No. of bitstreams: 1 ntu-98-R96941107-1.pdf: 1340516 bytes, checksum: 0df579e2781cff7b30c090888f972ce1 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Acknowledgement
摘要 ......................I Abstract ......................II Table of Content ...................III Table of Figures....................VI List of Tables ...................VII Chapter One .....................1 Literature Review ...................1 1-1 History of Optical Integrated Circuit Devices ..........1 1-2 Material for Waveguiding and Principle of Operation........1 1-3 Application of Optical Power Splitters .............2 Chapter Two....................3 Benzocyclobutene (BCB) Polymer ..............3 2-1. Introduction of BCB Polymer ..............3 2-1-1. BCB Waveguide and Material Chemistry ...........3 2-2. Properties of BCB .................5 2-2-1. Electrical Properties ................5 2-2-1-1. Dielectric Constant...............5 2-2-1-2. Dielectric Strength/Breakdown Voltage ..........5 2-2-1-3. Dissipation Factor ...............6 2-2-1-4. Volume Resistivity ..............6 2-2-2. Mechanical Properties ................6 2-2-2-1. Water Absorption ...............6 2-2-2-2. Planarization .................6 2-2-2-3. Thermal Stability ................7 2-2-2-4. Tensile Stress and Coefficient of Thermal Expansion (CTE)…………..7 2-2-3-4. Glass Transition Temperature............7 2-2-2-5 Summary of the Properties of BCB ..........8 2-2-2-6. Optical Properties of BCB ............8 2-3. Thermal Curing .................10 2-4. Different BCB Modes and Preparation Process.........11 2-4-1 Photo BCB Mode .................12 2-4-2. Processing of the Dry Etch BCB .............16 2-5 Fabrication Process .................16 2-5-1 Waveguide Preparation ...............17 2-5-2 UV Light Illumination Process .............. 19 2-5-3. Characteristics of the Waveguide ............. 19 2-5-4. Refractive Index Change and Measurement .......... 20 2-5-5. Prism Coupler .................. 20 2-6. The Effect of the UV Laser on the Refractive Index Changes ...... 23 Chapter Three .................... 26 Multimode Interference (MMI) Structure and Principle of Operation ..... 26 3-1. Introduction................... 26 3-2. Self-Imaging Property of the MMI Device ............ 26 3-2-1. Propagation Constant and the Beat Length .......... 27 3-2-2. Guided Mode Propagation Analysis ........... 29 3-3. Different Types of Interference Mechanisms and Their Characteristics .... 31 3-3-1. General Interference ............... 31 3-3-1-1. Single Images................. 32 3-3-1-2. Multiple Images ............... 32 3-4. Restricted Interference ................. 34 3-4-1. Paired Interference ................ 34 3-4.2. Symmetric Interference ............... 35 CHAPTER FOUR ................... 37 DESIGN OF THE MMI OPTICAL SPLITTER AND SIMULATIONS RESULTS . 37 4-1 The Beam Propagation Method of Simulation [10] .......... 37 4-2. Design of 1x3 Multimode Interference (MMI) Optical Power Splitter ..... 39 4-2-2. 1x3 Rectangular MMI Section with Straight Waveguide Output ...... 40 4-3. Linearly Tapered Input MMI Section ............ 42 4-4. A 1x3 Multimode Interference with S-Bending Outputs ........ 45 4-5. 1x3 MMI Optical Power Splitter with Linearly Tapered Input MMI Section and SBending waveguide outputs ................. 48 CHAPTER FIVE.................... 52 EXPERIMENTAL RESULTS AND DISCUSSION .......... 52 5-1. Optical Power Measurement............... 52 5-2. Experimental Results of 1x3 Rectangular MMI Section with S-bending output .. 54 5-3. Experimental Output of 1x3 Linearly Tapered Input MMI Section ...... 55 5-4. Summary and Discussion ............... 57 5-5. Comparing the Proposed 1x3 MMI Optical power Splitter with 0ther 1x3 MMI Optical power Splitters Based on Various Conditions ......... 58 Chapter 6. Conclusion and Future work ............ 59 6-1 Conclusion .................... 59 6-2 Future Work ................... 60 Reference ..................... 61 | |
| dc.language.iso | en | |
| dc.title | 國立臺灣大學電機資訊學院光電工程學研究所碩士論文 | zh_TW |
| dc.title | Improvement of Benzocyclobutene Multimode Interference Optical Power Splitter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張宏鈞(Hung-Chun Chang),黃升龍(Sheng-Lung Huang),彭隆瀚(Lung-Han Peng) | |
| dc.subject.keyword | 高分子,苯並環丁烯,紫外光雷射,光功率分離器,多模干涉,傳輸率改善。, | zh_TW |
| dc.subject.keyword | polymer,benzocyclobutene,ultraviolet laser light,optical power splitter multimode interference,transmission improvement, | en |
| dc.relation.page | 64 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
