請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25873完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲 | |
| dc.contributor.author | Dian-Sheng Chen | en |
| dc.contributor.author | 陳典聖 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:56:30Z | - |
| dc.date.copyright | 2009-07-27 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-24 | |
| dc.identifier.citation | [1] http://homepage.nbm.ntu.edu.tw/Researchs/Researchs.html
[2] http://www.memscap.com/ [3] http://www.sandia.gov/index.html [4] http://www.dlp.com/default.aspx [5] B. Legrand, A. S. Rollier, L. Buchaillot, and D. Collard,“Parallel Plate Electrostatic Actuators In Liquids: Displacement-Voltage Optimisation for Microfluidic Applications”, Proc. of MEMS 2006, pp. 718-721, January 2006. [6] D. Hah, S. T. Y. Huang, J. C. Tsai, H. Toshiyoshi, and M. C. Wu,“Low-Voltage, Large-Scan Angle MEMS Analog Micromirror Arrays with Hidden Vertical Comb-Drive Actuators”, J. Microelectromech. Syst., Vol. 13, No. 2, pp.279-289, April 2004. [7] R. A. Conant, J. T. Nee, K. Lau, R.S. Mueller,“A Flat High-Frequency Scanning Micromirror”, Proc. of 2000 Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 6-9, 2000. [8] I. W. Jung, U. Krishnamoorthy, and O. Solgaard,“High Fill-Factor Two-Axis Gimbaled Tip-Tilt-Piston Micromirror Array Actuated by Self-Aligned Vertical Electrostatic Combdrives”, J. Microelectromech. Syst., Vol. 15, No. 3, pp. 563-571, June 2006. [9] U. Krishnamoorthy, D. Lee, and O Solgaard,“Self-Aligned Vertical Electrostatic Combdrives for Micromirror Actuation”, J. Microelectromech. Syst., Vol. 12, No. 4, pp. 458-464, August 2003. [10] D. Hah, C. A. Choi, C. K. Kim, and C. H. Jun,“A Self-Aligned Vertical Comb-Drive Actuator on an SOI Wafer for a 2-D Scanning Micromirror”, J. Micromech. Microeng., Vol. 14, No. 8, pp. 1148-1156, August 2004. [11] V. Milanovic, G. A. Matus, and D. T. McCormick,“Gimbal-Less Monolithic Silicon Actuators for Tip-Tilt-Piston Micromirror Applications” J. Select. Topics Quantum Electron., Vol. 10, No. 3, pp. 462-471, May/June 2004. [12] K. Isamoto, T. Makino, A. Moroswa, C. Chong, H. Fujita, and H. Toshiyoshi,“Self-Assembly Technique for MEMS Vertical Comb Electrostatic Actuator”, IEICEElectronics Express, Vol. 2, No. 9, pp. 311-315, 2005. [13] W. Piyawattanametha, P. R. Patterson, D. Hah, H. Toshiyoshi, and M. C. Wu,“Surface- and Bulk- Micromachined Two-Dimensional Scanner Driven by Angular Vertical Comb Actuators”, J. Microelectromech. Syst., Vol. 14, No. 6, pp. 1329-1338, December 2005. [14] M. Fujino, P. R. Patterson, H. Nguyen, W. Piyawattanametha, and M. C. Wu,“Monolithically Cascaded Micromirror Pair Driven by Angular Vertical Combs for Two-Axis Scanning”, J. Select. Topics Quantum Electron., Vol. 10, No. 3, pp. 492-497, May/June 2004. [15] J. Kim and L. Lin,“Batch-Fabricated Scanning Micromirrors Using Localized Plastic Deformation of Silicon”, Proc. of MEMS 2004, pp. 494-497, January 2004. [16] S. T. Todd, and H. Xie, “An electrothermomechanical lumped element model of an electrothermal bimorph actuator,” J. Microelectromech. Syst., Vol. 17, No. 1, pp. 213-225, February 2008. [17] B. Solano and D. Wood, “Design and testing of a polymeric microgripper for cell manipulation,” Microelectronic Engineering, Vol. 84, pp. 1219-1222, 2007. [18] N. Chronis and L. P. Lee, “Electrothermally activated SU-8 microgripper for single cell manipulation in solution,” Journal of Microelectromechanical Systems, Vol. 14, No. 4, pp. 857-863, 2005. [19] D. Yan, A. Khajepour, and R. Mansour, “Design and modeling of a MEMS bidirectional vertical thermal actuator,” J. Micromech. Microeng., 14 (2004), pp. 841-850, 2004. [20] D. Yan, A. Khajepour, and R. Mansour, “Design and modeling of a MEMS bidirectional vertical thermal actuator,” J. Micromech. Microeng, 14 (2004), pp. 841-850, 2004. [21] W. C. Chen, C. C. Chu, J. Hsieh, and W. L. Fang, “A reliable single-layer out-of-plane micromachined thermal actuator,” Sensors and Actuators A: Physical, 103 (1), pp. 48-58, January 2003. [22] J. Lee, D. S. Park, A. K. Nallani, Y. Cui, A. Skoyles, and J.-B. Lee, “High-aspect ratio metallic nano grippers,” in Proc. of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Jan. 18-21, 2006, Zhuhai, China, pp. 682-686. . [23] K. Ivanova et al., “Thermally driven microgripper as a tool for micro assembly,” Microelectronic Engineering, Vol. 83, pp. 1393-1395, 2006. [24] V. Eichhorn, K. Carlson, K. N. Andersen, S. Fatikow, and P. Bøggild, “Nanorobotic manipulation setup for pick-and-place handling and nondestructive characterization of carbon nanotubes,” in Proc. of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA, Oct. 29-Nov. 2, 2007, pp 291-296. [25] T. Chu Duc, G. K. Lau, J. F. Creemer, and P. M. Sarro, “Electrothermal microgripper with large jaw displacement and integrated force sensors,” in Proc. of IEEE MEMS 2008, Tucson, AZ, USA, Jan. 13-17, 2008, pp. 519-522. [26] K.Y. Kim, X.Y. Liu, Y. Zhang, and Y. Sun, “MicroNewton force-controlled manipulation of biomaterials using a monolithic MEMS microgripper with two-axis force feedback,” IEEE International Conf. on Robotics and Automation (ICRA'08), Pasadena, California, May 19-23, 2008. [27] T. Chu Duc, G. K. Lau, J. Wei and P. M. Sarro,“2D electro-thermal microgrippers with large clamping and rotation motion at low driving voltage, ” in Proc. of IEEE MEMS 2007, Kobe, Japan, Jan. 21-25, 2007, pp. 687-690. [28] S. C. Chen, M. L. Culpepper, “Design of a six-axis micro-scale nanopositioner — HexFlex”, Precision Engineering, 30 (2006), pp. 314–324, 2006. [29] Y. Eun, H. Na and J. Kim, “Bidirectional electrothermal electromagnetic torsional microactuators,” Proc. of MEMS 2009, pp. 1039-1042, January 2009. [30] B.E. Volland et al., “Duo-action electro thermal micro gripper,” Microelectronic Engineering, Vol. 84, pp. 1329-1332, 2007. [31] K. M. Liao, C. C. Chueh, and R. Chen, “A novel electro-thermally driven bi-directional microactuator,” in Proc. of 2002 International Symposium on Micromechatronics and Human Science, pp. 267-274. [32] G. K. Lau, J. F. L. Goosen, F. van Keulen, T. Chu Duc, and P. M. Sarro, “Powerful polymeric thermal microactuator with embedded silicon microstructure,” Applied Physics Letters, Vol. 90, 214103, 2007. [33] T. Chu Duc, G. K. Lau, and P. M. Sarro, “Polymeric thermal microactuator with embedded silicon skeleton: part II - fabrication, characterization, and application for 2-DOF microgripper,” Journal of Microelectromechanical Systems, Vol. 17, No. 4, pp. 823-831, 2008. [34] J. Wei, T.C. Duc, and P. M. Sarro, “An electro-thermal silicon-polymer micro-gripper for simultaneous in-plane and out-of-plane motions,” in Proc. of Eurosensors 2008, Dresden, Germany, Sep. 7-10, 2008. [35] J. Wei, T. Chu Duc, G. K. Lau, and P.M. Sarro, “Novel electrothermal bimorph actuator for large out-of-plane displacement and force,” in Proc. of IEEE MEMS 2008, Tucson, AZ, USA, Jan. 13-17, 2008, pp. 46-49. [36] P.M. Sarro, “Advanced 3D Microstructuring for Integrated Silicon Microactuators,” Micro-NanoMechatronics and Human Science, 2008, Nagoya, Nov. 6-9, 2008, pp. 174-179. [37] F. Li, S. Gloeckner, P. D. Dobblelaere, S. Patra, D. Reiley, C. King, T. Yeh, J.Gritters, S. Gutierrez, Y. Loke, M. Harburn, R. Chen, E. Kruglick, M. Wu, and A. Husain, 'Digital MEMS switch for planar photonic crossconnects, ” in Optical Fiber Communication Conference and Exhibit, 2002. OFC 2002, pp.93-94, 2002. [38] D. T. Neilson, R. Frahm, P. Kolodner, C. A. Bolle, R. Ryf, J. Kim, A. R. Papazian, C. J. Nuzman, A. Gasparyan, N. R. Basavanhally, V. A. Aksyuk, and J. V. Gates, '256 x 256 port optical cross-connect subsystem, ” Journal of Lightwave Technology, vol. 22, pp. 1499-1509, 2004. [39] J. C. Tsai, S. T. Y. Huang, D. Hah, and M. C. Wu, “1 x N-2 wavelength-selective switch with two cross-scanning one-axis analog micromirror arrays in a 4-f optical system, “Journal of Lightwave Technology, vol. 24, pp. 897-903, 2006. [40] J. C. Tsai and M. C. Wu, “A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two-axis MEMS scanner array,' IEEE Photonics Technology Letters, vol. 18, pp. 1439-1441, 2006. [41] A. Jain and H. Xie, “Microendoscopic confocal imaging probe based on an LVD microlens scanner”, J. Selected Topics In Quantum Electronics, Vol. 13, No. 2, pp. 228-234, March/April 2007. [42] Q. A. Huang and N. K. S. Lee, “Analysis and design of polysilicon thermal flexure actuator,” J. Micromech. Microeng. 9 (1999) 64–70. [43] R. J. Lai, “Measurements and analyses of the electrostatic in-plane comb-drive rotational platforms and 1-D vertical electrothermal actuators,” Master Thesis, July. 2008. [44] R. J. Lai, C. Y. Yin, D. S. Chen, Y. T. Chang, and J. C. Tsai, “An out-of-plane rotational platform with in-plane electrostatic combs made by the MetalMUMPs process,” 19th MicroMechanics Europe Workshop, Paper B.24, Aachen, Germany, Sept. 2008. [45] J. C. Tsai, R. J. Lai, C. Y. Yin, D. S. Chen, and P. F. Yeh, “An out-of-plane rotational platform with in-plane electrostatic combs made by the MetalMUMPs process,” J. Micromech. Microeng. 19 (2009) 074007 (6pp). [46] R. J. Lai, C. Y. Yin, D. S. Chen, Y. T. Chang, J. C. Tsai, and C. W. Sun, “A novel low-current, large-displacement, thick vertical electrothermal actuator with separated metal and nitride structural layers,” Asia-Pacific Conference on Transducers and Micro-Nano Technology 2008, Paper 2S24, Tainan, Taiwan, Jun. 2008. [47] J. C. Tsai, R. J. Lai, C. Y. Yin, D. S. Chen, and Y. T. Chang, “Vertical electrothermal actuator with separated metal and nitride structural layers,” J. Micro/Nanolith. MEMS MOEMS, vol. 8, 021114 (2009). [48] D. S. Chen, R. J. Lai, C. Y. Yin,, and J. C. Tsai, “A multiple degrees of freedom electrothermal actuator for a versatile MEMS gripper,” Proc. of MEMS 2009, pp. 1035 - 1038, January 2009. [49] W. Piyawattanametha et al., JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, Vol. 14, No. 6, pp. 1329-1338, DECEMBER 2005. [50] 台大'奈米光機電系統'課程講義 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25873 | - |
| dc.description.abstract | 微機電系統(Microelectromechanical System, MEMS)是一種結合光學、機械、電子、材料、控制、物理、化學、生醫等多重技術領域的整合型微小化系統製造技術,隨著科技的進步,許多微機電(MEMS)的技術也逐漸發展趨於成熟,目前其應用範圍也非常的廣泛,包括加速計(accelerometer)、壓力感測計、生化感測計、噴墨印表機噴頭、陀螺儀、以及許多種感測器等等。而藉由COMS/MEMS整合製程以帶來更高的競爭力,並擴大了MEMS在消費性電子產品的潛在應用。
常見的致動器具有不同驅動方式:靜電驅動、電熱驅動、壓電形變、電磁驅動……等等,而驅動方式不同產生位移效果也有差異,一般而言針對不同的材料特性以及不同元件操作方式去設計其驅動方式。 於本篇論文中介紹利用MetalMUMPs製程方式去製造各種不同的元件,首先是以靜電方式驅動的平面梳狀致動器(comb-drive)一維旋轉平台。此旋轉平台的轉軸位於平台底部中央,當加電壓於疏狀致動器時,側向將會有靜電力產生,此平台會因為底部有支點的關係而傾倒,所以會產生旋轉。得到實驗結果為當施加105V的電壓時平台的旋轉角度可達2.870. 論文中提出的第二種設計是一維垂直方向位移的電熱致動器。改變以往以單一材料(uni-material)為主要結構或者是不同材料結合而成的雙層結構(bimorph),我們設計了分隔式、再加上多種材料結合而成的電熱致動器,其中最頂層之鎳金屬具有較大的熱膨脹係數(CTE)以及較小的比熱,中間層是空氣視為gap,底層的多晶矽(Polysilicon)當做電流通路並且被氮化矽(Si3N4)所包覆住。當電流通整個結構時鎳金屬會產生一維垂直向下的彎曲。經過量測多組不同設計尺寸的元件得到最小的驅動電流在1.06mA時,致動器頂端即可達到20μm向下的位移,消耗的功率為16.29mW. 本篇論文的最後我們提出了結合兩個各自獨立方向的電熱致動器,組合成二維的微機電電熱夾(MEMS gripper),其中橫向的位移是由鎳金屬所組成的冷端-熱端結構(hot-arm and cold-arm architecture)當電流導通後,由於截面積大小不同,將產生溫差而使得膨脹不同造成橫向方面的位移,另外縱向位移是由本論文中所提出的第二種電熱致動器設計,藉由結合兩者而設計成為可以夾住物體的元件,本元件產生最大的橫向位移83.7μm以及縱向位移98μm,當電壓分別加橫向電壓0.6v以及縱向電壓87.2v | zh_TW |
| dc.description.abstract | Micro-Electro-Mechanical System(MEMS) is the technology which integrate the optics, mechanics, electronics, materials, control, chemicals, physicals, and biomedical, and optoelectronics techniques to fabricate micro-scale mechanical elements. With the technology progressing, many other MEMS technology develop gradually. In recent years, MEMS have applied to a wide field, including the accelerometer sensor using in airbag deployment systems for modern automobiles, inkjet-printer cartridges, pressure sensor, biological sensor, micro-gyroscopes, etc. The applications of MEMS technology have covered the consumer electronics due to integration of CMOS technology.
The actuation methods for typical micro-actuator include electrostatic driving, electrothermal driving, piezoelectric deformation, and electromagnetic driving, etc. Various mechanisms have been exploited to generate force and displacement. In generally, we have to drive the device by its material characteristic and the operation. In this paper, we present some device which were made by MetalMUMPs process. The first, we design a 1-D rotational platform which is driven by electrostatic in-plane comb-drive actuators. The rotation axis locates on the middle of the bottom of the platform. When we apply the voltage between the comb fingers, the platform will cause “tilt” due to the created pivot on the bottom of the platform so that the rotational platform is accomplished. An out-of-plane rotational platform with in-plane electrostatic comb-drive actuators is presented in this thesis. A rotational angle of ±2.87o is achieved at a static driving voltage of 105V. Another design proposed in this thesis is the vertical electrothermal actuators. We design the electrothermal actuators in the form of separated multi-materials which are different from uni-material and bimorph. Among them, the upper nickel metal provides higher coefficient of thermal expansion (CTE) and lower specific heat. The middle layer of the structure is air gap. Silicon nitride is used to be the torsion springs that connects to the movable nickel combs and rotational platform. Polysilicon enclosed in the nitride springs provides the electrical feed-through for the movable combs. While the electric current passes through this circuit, the tip of the nickel metal will induce downward bending. After measuring several devices in different design parameters, the actuator tip displacement of 20μm is achieved in driving power of 16.29mW. In the last of the article, we present the bidirectional MEMS gripper by combing two independent directions electrothermal actuators. The nickel metal compose hot-arm and cold-arm architecture. The two arms have different cross area so that the current flow this structure it would make the different temperature between them and cause the lateral displacement. Moreover, the vertical displacement is achieved by the second kind of design. Combing the two different directions actuators, the MEMS gripper is capable of two-dimensional manipulation. The in-plane and out-of-plane tip displacements are 83.7 μm at 0.6 V and 98 μm at 87.2 V, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:56:30Z (GMT). No. of bitstreams: 1 ntu-98-R96941055-1.pdf: 6587168 bytes, checksum: 0eb40f301ead38ccb879dbc9b6a00536 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………………I
中文摘要…………………………………………………………………II Abstract ………………………………………………………………IV Contents…………………………………………………………………Ⅵ List of Figures……………………………………………………VIII List of tables………………………………………………………XIII Chapter 1 MEMS technology…………………………………………1 1.1 Introduction of MEMS……………………………………………1 1.2 MEMS fabrications………………………………………………2 Chapter 2 MEMS actuation mechanisms……………………………7 2.1 Electrostatic actuations………………………………………7 2.2 Electro-thermal actuations…………………………………15 2.3 Magnetic actuations……………………………………………21 Chapter 3 Applications of MEMS actuation……………………24 3.1 MEMS gripper……………………………………………………24 3.2 Micromirror………………………………………………………31 Chapter 4 Electrostatic in-plane comb-drive rotational platform…………………………………………………………………34 4.1 Introduction……………………………………………………34 4.2 Design, working principle and fabrication………………34 4.3 Device simulation………………………………………………39 4.4 Experimental results…………………………………………44 4.5 Conclusions……………………………………………………48 Chapter 5 1-D vertical electrothermal iona actuators……49 5.1 Introduction……………………………………………………49 5.2 Design, working principle and fabrication………………50 5.3 Device simulation………………………………………………56 5.4 Experimental results …………………………………………58 5.5 Conclusions………………………………………………………67 Chapter 6 A multiple degrees of freedom electrothermal actuator for a versatile MEMS gripper…………………………68 6.1 Introduction……………………………………………………68 6.2 Design, working principle and fabrication………………69 6.3 Device simulation………………………………………………78 6.4 Experimental results…………………………………………84 6.5 Conclusions………………………………………………………90 Reference………………………………………………………………91 | |
| dc.language.iso | en | |
| dc.subject | 靜電致動器 | zh_TW |
| dc.subject | 微機電 | zh_TW |
| dc.subject | 電熱致動器 | zh_TW |
| dc.subject | 微機電電熱夾 | zh_TW |
| dc.subject | 平面梳狀致動器 | zh_TW |
| dc.subject | 多層材料 | zh_TW |
| dc.subject | electrothermal actuator | en |
| dc.subject | multi-material | en |
| dc.subject | MEMS | en |
| dc.subject | MEMS gripper | en |
| dc.subject | electrostatic actuator | en |
| dc.subject | in-plane comb-drive actuator | en |
| dc.title | 使用MetalMUMPs技術製作靜電旋轉平台和一維電熱致動器以及多維度之微機電電熱夾 | zh_TW |
| dc.title | Electrostatic In-plane Comb-drive Rotational Platforms, 1-D Vertical Electrothermal Actuators, and Multiple DOFs MEMS Gripper Fabricated by the MetalMUMPs Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉,呂志偉 | |
| dc.subject.keyword | 微機電,靜電致動器,電熱致動器,微機電電熱夾,平面梳狀致動器,多層材料, | zh_TW |
| dc.subject.keyword | MEMS,MEMS gripper,electrostatic actuator,electrothermal actuator,in-plane comb-drive actuator,multi-material, | en |
| dc.relation.page | 98 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 6.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
