Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁(Fang-Jen S. Lee)
dc.contributor.authorSung-Pu Tsaien
dc.contributor.author蔡松蒲zh_TW
dc.date.accessioned2021-06-08T06:56:24Z-
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-24
dc.identifier.citationAlberti, S., Halfmann, R., King, O., Kapila, A., and Lindquist, S. (2009). A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146-158.
Albuquerque, C. P., Smolka, M. B., Payne, S. H., Bafna, V., Eng, J., and Zhou, H. (2008). A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7, 1389-1396.
Anderson, J. T., Paddy, M. R., and Swanson, M. S. (1993). PUB1 is a major nuclear and cytoplasmic polyadenylated RNA-binding protein in Saccharomyces cerevisiae. Mol Cell Biol 13, 6102-6113.
Anderson, P., and Kedersha, N. (2002). Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress Chaperones 7, 213-221.
Anderson, P., and Kedersha, N. (2006). RNA granules. J Cell Biol 172, 803-808.
Anderson, P., and Kedersha, N. (2009). RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 10, 430-436.
Ashe, M. P., De Long, S. K., and Sachs, A. B. (2000). Glucose depletion rapidly inhibits translation initiation in yeast. Mol Biol Cell 11, 833-848.
Bharucha, N., Ma, J., Dobry, C. J., Lawson, S. K., Yang, Z., and Kumar, A. (2008). Analysis of the yeast kinome reveals a network of regulated protein localization during filamentous growth. Mol Biol Cell 19, 2708-2717.
Blumberg, H., and Silver, P. A. (1991). A homologue of the bacterial heat-shock gene DnaJ that alters protein sorting in yeast. Nature 349, 627-630.
Brinkworth, R. I., Munn, A. L., and Kobe, B. (2006). Protein kinases associated with the yeast phosphoproteome. BMC Bioinformatics 7, 47.
Buchan, J. R., Muhlrad, D., and Parker, R. (2008). P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol 183, 441-455.
Buu, L. M., Jang, L. T., and Lee, F. J. (2004). The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem 279, 453-462.
Cheung, W. L., Briggs, S. D., and Allis, C. D. (2000). Acetylation and chromosomal functions. Curr Opin Cell Biol 12, 326-333.
Clarke, S. (1993). Protein methylation. Curr Opin Cell Biol 5, 977-983.
Clery, A., Blatter, M., and Allain, F. H. (2008). RNA recognition motifs: boring? Not quite. Curr Opin Struct Biol 18, 290-298.
Craig, E. A., Gambill, B. D., and Nelson, R. J. (1993). Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol Rev 57, 402-414.
Decker, C. J., Teixeira, D., and Parker, R. (2007). Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179, 437-449.
DePace, A. H., Santoso, A., Hillner, P., and Weissman, J. S. (1998). A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93, 1241-1252.
Doma, M. K., and Parker, R. (2007). RNA quality control in eukaryotes. Cell 131, 660-668.
Fan, C. Y., Ren, H. Y., Lee, P., Caplan, A. J., and Cyr, D. M. (2005). The type I Hsp40 zinc finger-like region is required for Hsp70 to capture non-native polypeptides from Ydj1. J Biol Chem 280, 695-702.
Ficarro, S. B., McCleland, M. L., Stukenberg, P. T., Burke, D. J., Ross, M. M., Shabanowitz, J., Hunt, D. F., and White, F. M. (2002). Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 20, 301-305.
Grousl, T., Ivanov, P., Frydlova, I., Vasicova, P., Janda, F., Vojtova, J., Malinska, K., Malcova, I., Novakova, L., Janoskova, D., et al. (2009). Robust heat shock induces eIF2{alpha}-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 122, 2078-2088.
Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P., Faergeman, N. J., Mann, M., and Jensen, O. N. (2005). Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4, 310-327.
Henry, M. F., and Silver, P. A. (1996). A novel methyltransferase (Hmt1p) modifies poly(A)+-RNA-binding proteins. Mol Cell Biol 16, 3668-3678.
Hunter, T. (2000). Signaling--2000 and beyond. Cell 100, 113-127.
Hunter, T., and Plowman, G. D. (1997). The protein kinases of budding yeast: six score and more. Trends Biochem Sci 22, 18-22.
Isken, O., and Maquat, L. E. (2007). Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21, 1833-1856.
James, P., Pfund, C., and Craig, E. A. (1997). Functional specificity among Hsp70 molecular chaperones. Science 275, 387-389.
Jang, L. T., Buu, L. M., and Lee, F. J. (2006). Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J Biol Chem 281, 29379-29390.
Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fritzler, M. J., Scheuner, D., Kaufman, R. J., Golan, D. E., and Anderson, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169, 871-884.
Kedersha, N. L., Gupta, M., Li, W., Miller, I., and Anderson, P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol 147, 1431-1442.
Kessler, M. M., Henry, M. F., Shen, E., Zhao, J., Gross, S., Silver, P. A., and Moore, C. L. (1997). Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3'-end formation in yeast. Genes Dev 11, 2545-2556.
Lee, F. J., and Moss, J. (1993). An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J Biol Chem 268, 15080-15087.
Lee, K., Du, C., Horn, M., and Rabinow, L. (1996). Activity and autophosphorylation of LAMMER protein kinases. J Biol Chem 271, 27299-27303.
Maris, C., Dominguez, C., and Allain, F. H. (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. Febs J 272, 2118-2131.
Mayer, M. P., Brehmer, D., Gassler, C. S., and Bukau, B. (2001). Hsp70 chaperone machines. Adv Protein Chem 59, 1-44.
Narayanan, A., and Jacobson, M. P. (2009). Computational studies of protein regulation by post-translational phosphorylation. Curr Opin Struct Biol 19, 156-163.
Nelson, R. J., Heschl, M. F., and Craig, E. A. (1992). Isolation and characterization of extragenic suppressors of mutations in the SSA hsp70 genes of Saccharomyces cerevisiae. Genetics 131, 277-285.
Padmanabha, R., Gehrung, S., and Snyder, M. (1991). The KNS1 gene of Saccharomyces cerevisiae encodes a nonessential protein kinase homologue that is distantly related to members of the CDC28/cdc2 gene family. Mol Gen Genet 229, 1-9.
Parker, R., and Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Mol Cell 25, 635-646.
Reijns, M. A., Alexander, R. D., Spiller, M. P., and Beggs, J. D. (2008). A role for Q/N-rich aggregation-prone regions in P-body localization. J Cell Sci 121, 2463-2472.
Rikhvanov, E. G., Romanova, N. V., and Chernoff, Y. O. (2007). Chaperone effects on prion and nonprion aggregates. Prion 1, 217-222.
Roth, A. F., and Davis, N. G. (2000). Ubiquitination of the PEST-like endocytosis signal of the yeast a-factor receptor. J Biol Chem 275, 8143-8153.
Schellenberg, M. J., Edwards, R. A., Ritchie, D. B., Kent, O. A., Golas, M. M., Stark, H., Luhrmann, R., Glover, J. N., and MacMillan, A. M. (2006). Crystal structure of a core spliceosomal protein interface. Proc Natl Acad Sci U S A 103, 1266-1271.
Schlenstedt, G., Harris, S., Risse, B., Lill, R., and Silver, P. A. (1995). A yeast DnaJ homologue, Scj1p, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with Hsp70s. J Cell Biol 129, 979-988.
Seo, J., and Lee, K. J. (2004). Post-translational modifications and their biological functions: proteomic analysis and systematic approaches. J Biochem Mol Biol 37, 35-44.
Shen, E. C., Henry, M. F., Weiss, V. H., Valentini, S. R., Silver, P. A., and Lee, M. S. (1998). Arginine methylation facilitates the nuclear export of hnRNP proteins. Genes Dev 12, 679-691.
Sheth, U., and Parker, R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808.
Siebel, C. W., and Guthrie, C. (1996). The essential yeast RNA binding protein Np13p is methylated. Proc Natl Acad Sci U S A 93, 13641-13646.
Smolka, M. B., Albuquerque, C. P., Chen, S. H., and Zhou, H. (2007). Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc Natl Acad Sci U S A 104, 10364-10369.
Teixeira, D., Sheth, U., Valencia-Sanchez, M. A., Brengues, M., and Parker, R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. Rna 11, 371-382.
Uesono, Y., and Toh, E. A. (2002). Transient inhibition of translation initiation by osmotic stress. J Biol Chem 277, 13848-13855.
Valentini, S. R., Weiss, V. H., and Silver, P. A. (1999). Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3'-end formation. Rna 5, 272-280.
Walsh, C. T., Garneau-Tsodikova, S., and Gatto, G. J., Jr. (2005). Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44, 7342-7372
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25863-
dc.description.abstract在真核細胞中,核醣核酸結合蛋白調控著信使核醣核酸(mRNA)的轉錄和轉錄後事件(post-transcriptional events),例如剪接(splicing)、編輯(editing)、運輸出核(export)、穩定性(stability)、位置(localization)和轉譯(translation)。之前實驗室發現酵母菌核醣核酸結合蛋白Rbp1p,分布在細胞質中,為具有抑制酵母菌生長的負調控因子。此外,在葡萄糖剝奪(glucose depletion)、熱壓力(heat shock)等環境壓力下,Rbp1p分別會座落到細胞質中的細胞質處理小體(P-bodies)及壓力體(stress granules; SGs)。利用二維電泳分析,發現在這兩種環境壓力下Rbp1p等電點圖譜皆有往酸性端移動之現象。推測在處在環境壓力下Rbp1p含有不同的轉譯後修飾。藉由質譜儀分析Rbp1p轉譯後修飾,發現了八個磷酸化的位置,並且利用定點突變(site-directed mutagenesis)的技術將它們突變為丙氨酸,觀察到這些突變型的Rbp1p不會影響抑制酵母菌生長的能力。另外,也發現在環境壓力下,這些突變型的Rbp1p依然可以座落到細胞質處理小體。同時在酵母菌雙雜交實驗發現S646A和S649A突變型的Rbp1p和野生型的Rbp1p結合的能力會減弱。藉著共同免疫沉澱實驗,我們發現了Ssa2p為Rbp1p的結合蛋白,並且在熱壓力的環境下結合的能力會下降。此外,在ssa2突變株中大量表現Rbp1p,Rbp1p抑制酵母菌生長的能力增強了。zh_TW
dc.description.abstractIn eukaryotic cells, RNA binding proteins regulate mRNA transcription and post-transcriptional events, such as splicing, editing, export, stability, localization, and translation. Our laboratory has demonstrated that RNA binding protein1, Rbp1p, appears punctate in cytoplasm and as a negative growth regulator. In addition, Rbp1p localizes to P-bodies and stress granules in cytoplasm upon glucose deprivation and heat shock, respectively. Using two-dimensional electrophoresis analysis, the iso-electric point pattern of Rbp1p shows spots toward acidic pore after glucose deprivation and heat shock treating. The results imply that Rbp1p contains different post-translational modifications in stress conditions. By mass spectrometry analysis, we identify eight phosphorylation sites of Rbp1p (Ser459, Ser462, Ser463, Ser524, Ser526, Thr637, Ser646, and Ser649), and using site-directed mutagenesis approach to substitute alanine for serine/threonine. S646A and S649A mutants of Rbp1p decrease the ability of interaction with Rbp1p by yeast two-hybrid assay. Under glucose deprivation, however, phosphorylation mutants of Rbp1p can still localize to P-bodies, and these mutants cannot affect ability of growth inhibition. In co-immunoprecipitation experiments, I identify that Ssa2p is one of associated proteins with Rbp1p, and the interaction ability diminishes at heat shock. Besides, overexpression of Rbp1p in ssa2Δ strain enhances the growth-inhibition ability. It implies that Ssa2p can inhibit Rbp1p negative regulator growth.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:56:24Z (GMT). No. of bitstreams: 1
ntu-98-R94448007-1.pdf: 2003651 bytes, checksum: 6c6ec8b115385cfc12410da36fb4b940 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要..................................................IV
ABSTRACT...................................................V
INTRODUCTION...............................................1
RESULT....................................................12
I. Properties of phospho-mutant of Rbp1p..................12
II. To characterize Rbp1p under glucose deprivation.......14
III. To characterize Rbp1p under heat shock...............15
DISCUSSION................................................19
MATERIALS AND METHODS.....................................22
Growth of yeast...........................................22
Construction of plasmids..................................22
Yeast transform...........................................22
Yeast cell lysates, Western blot and immunoprecipation....23
Sample preparation for two-dimensional electrophoresis....24
Two-dimensional electrophoresis...........................25
Yeast two-hybrid analysis.................................25
TABLES....................................................27
Table 1. Yeast strains used in this thesis................27
Table 2. Plasmids used in this thesis.....................28
Table 3. Primers used in this thesis......................29
Table 4. Antibodies used in this thesis...................30
Table 5. Summarize candidates of Rbp1p associated protein under heat shock..........................................31
FIGURES...................................................33
Figure 1. Structural organization of Rbp1p and its phosphorylation mutants...................................33
Figure 2. Overecxpression of Rbp1p phospho-mutants in rbp1Δ strain.............................................34
Figure 3. Rbp1p-S646A and Rbp1p-S649A affect self-association ability..................................35
Figure 4. Rbp1p shows different patterns between glucose-containing medium and glucose-deprivation medium by two-dimensional electrophoresis analysis..................36
Figure 5. Rbp1p localization to P-bodies is not affected by mutation at Ser459, Ser462, Ser463, Ser524 and Ser526....................................................37
Figure 6. Figure 6. Rbp1p localization to P-bodies is not affected by mutation at Thr637, Ser646, and Ser649....38
Figure 7. Glucose deprivation affects Rbp1p interacting with its associated proteins..............................39
Figure 8. Rbp1p shows different patterns between 30℃ and 42℃ medium by two-dimensional electrophoresis analysis.
..........................................................40
Figure 9. The localization of Rbp1p under heat shock is not affected by mutation at Ser459, Ser462, Ser463, Ser524 and Ser526................................................41
Figure 10. The localization of Rbp1p under heat shock is not affected by mutation at Thr637, Ser646, and Ser649....42
Figure 11. Heat shock affects Rbp1p interacting with its associated proteins.......................................43
Figure 12. Identification of Rbp1p interacting proteins under heat shock..........................................44
Figure 13. Overexpression of Rbp1p in ssa2Δ strain enhances the growth-inhibition ability....................45
Figure 14. The amount of pSer524 Rbp1p is altered under glucose deprivation.......................................46
Appendix 1. Overecxpression of Rbp1p in scj1, kns1, and hmt1 are unable to affect the growth-inhibition ability
..........................................................47
Appendix 2. Rbp1p shows different patterns between wild type and ksp1 strains.....................................48
REFERENCE.................................................49
dc.language.isoen
dc.subject酵母菌核醣核酸蛋白zh_TW
dc.subjectRbp1pen
dc.title探討酵母菌核醣核酸蛋白Rbp1p面對環境壓力之後轉譯修飾zh_TW
dc.titleCharacterization of Posttranslational modification of RNA binding protein, Rbp1p, in Saccharomyces cerevisiae under stress conditionsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄(Shu-Chun Teng),游佳融(Chia-Jung Yu),張典顯(Tien-Hsien Chang)
dc.subject.keyword酵母菌核醣核酸蛋白,zh_TW
dc.subject.keywordRbp1p,en
dc.relation.page52
dc.rights.note未授權
dc.date.accepted2009-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved