請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25855完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂勝春(Sheng-Chung Lee) | |
| dc.contributor.author | Ya-Huei Lin | en |
| dc.contributor.author | 林雅慧 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:56:20Z | - |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-26 | |
| dc.identifier.citation | 1. Yoshiko Katoh, Hiroshi Takemori, Nanao Horike, Junko Doi, Masaaki Muraokaa, Li Mina, Mitsuhiro Okamoto. (2004) Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Molecular and Cellular Endocrinology 217, 109-112.
2. Nanao Horike, Hiroshi Takemori, Yoshiko Katoh, Junko Doi, Li Min, Tomoichiro Asano, Xiao Jian Sun, Hiroyasu Yamamoto, Soji Kasayama, Masaaki Muraoka, Yasuki Nonaka, and Mitsuhiro Okamoto. (2003) Adipose-specific Expression, Phosphorylation of Ser794 in Insulin Receptor Substrate-1, and Activation in Diabetic Animals of Salt-inducible Kinase-2. The Journal of Biological Chemistry 278, 18440-18447. 3. Junko Doi, Hiroshi Takemori, Xing-zi Lin, Nanao Horike, Yoshiko Katoh and Mitsuhiro Okamoto. (2002) Salt-inducible kinase represses cAMP-dependent protein kinase mediated activation of human cholesterol side chain cleavage cytochrome P450 promoter through the CREB basic leucine zipper domain. The Journal of Biological Chemistry 277, 15629-15637. 4. Yoshiko Katoh, Hiroshi Takemori, Xing-zi Lin, Mitsuhiro Tamura, MasaakiMuraoka, Tomohiro Satoh, Yuko Tsuchiya, Li Min, Junko Doi, Akira Miyauchi, Lee A. Witters, Haruki Nakamura4 and Mitsuhiro Okamoto. (2006) Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS Journal 273, 2730-2748 5. Renaud Dentin, Yi Liu, Seung-Hoi Koo, Susan Hedrick, Thomas Vargas, Jose Heredia, John Yates III and Marc Montminy. (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449, 366-370. 6. Phyllis I. Hanson and Sidney W. Whiteheart. (2005) AAA+ proteins: Have engine, Will work. Nature Rev. Mol. Cell Biol. 6, 519-529. 7. Kristijan Ramadan, Roland Bruderer, Fabio M. Spiga, Oliver Popp, Tina Baur, Monica Gotta and Hemmo H. Meyer. (2007) Cdc48/p97 promotes reformation of the nucleus by extracting the kinase Aurora B from chromatin. Nature 450, 1258-1263. 8. Martin Hetzer, Hemmo H. Meyer, Tobias C. Walther, Daniel Bilbao-Cortes, Graham Warren and Iain W. Mattaj. (2001) Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat. Cell Bio. 3, 1086-1097. 9. Efrat Rabinovich, Anat Kerem, Kai-Uwe Fro¨hlich, Noam Diamant, and Shoshana Bar-Nun. (2002) AAA-ATPase p97/Cdc48p, a Cytosolic Chaperone Required for Endoplasmic Reticulum-Associated Protein Degradation. Molecular and Cellular Biology 22, 626-634. 10. Taeko Kobayashi, Atsushi Manno and Akira Kakizuka. (2007) Involvement of valosin-containing protein (VCP)/p97 in the formation and clearance of abnormal protein aggregates. Genes to Cells 12, 889–901. 11. Hisao Kondo, Catherine Rabouille, Richard Newman, Timothy P. Levine, Darryl Pappin, Paul Freemont and Graham Warren. (1997) p47 is a cofactor for p97-mediated membrane fusion. Nature 388, 75-78. 12. Kan Cao,Reiko Nakajima, Hemmo H. Meyer and Yixian Zheng. (2003) The AAA-ATPase Cdc48/p97 Regulates Spindle Disassembly at the End of Mitosis. Cell 115, 355-367. 13. Yihong Ye, Hemmo H. Meyer and Tom A. Rapoport. (2003) Function of thep97–Ufd1–Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. The Journal of Cell Biology 162, 71-84. 14. Makiko-Iijima Kitami, Toshiaki Kitami, Masami Nagahama, Mitsuo Tagaya, Seiji Hori, Akira Kakizuka, Yoshikuni Mizuno, Nobutaka Hattori. (2006) Dominant-negative effect of mutant valosin-containing protein in aggresome formation. FEBS Letters 580, 474-478. 15. Jeong-Sun Ju, Sara E. Miller, Phyllis I. Hanson, and Conrad C. Weihl. (2008) Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/VCP-associated disease. The Journal of Biological Chemistry 283, 30289-30299. 16. L. Guyant-Maréchal, A. Laquerrière, C. Duyckaerts, C. Dumanchin, J. Bou, F. Dugny, I. Le Ber, T. Frébourg, D. Hannequin and D. Campion. (2006) Valosin-containing protein gene mutations: Clinical and neuropathologic features. Neurology 67, 644-651. 17. Giles D J Watts, Jill Wymer, Margaret J Kovach, Sarju G Mehta, Steven Mumm,Daniel Darvish, Alan Pestronk, Michael P Whyte and Virginia E Kimonis. (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat. Genet. 36, 377-381. 18. Christian U. Hubbers, Christoph S. Clemen, Kristina Kesper, Annett Boddrich, Andreas Hofmann, Outi Kamarainen, Karen Tolksdorf, Maria Stumpf, Julia Reichelt, Udo Roth, Sabine Krause, Giles Watts, Virginia Kimonis, Mike P. Wattjes, Jens Reimann, Dietmar R. Thal, Katharina Biermann, Bernd O. Evert, Hanns Lochmuller, Erich E. Wanker, Benedikt G. H. Schoser, Angelika A. Noegel and Rolf Schroder. (2007) Pathological consequences of VCP mutations on human striated muscle. Brain 130, 381-393. 19. Ou,S.-H.I., Wu,F., Harrich,D., Garcia-Martinez,L.F. and Gaynor,R.B. (1995) Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J. Virol. 69, 3584-3596. 20. Ayala,Y.M., Misteli,T. and Baralle,F.E. (2008) TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proc. Natl Acad. Sci. 105, 3785-3789.21. Buratti,E. and Baralle,F.E. (2001) Characterization and functional implications of the RNA binding properties of nuclear factor TDP-43, a novel splicing regulator of CFTR exon 9. J. Biol. Chem. 276, 36337-36343. 22. C C Weihl, P Temiz, S E Miller, G Watts, C Smith, M Forman, P I Hanson, V Kimonis, A Pestronk. (2008) TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J. Neurol. Neurosurg. Psychiatry 79,1186-1189. 23. Manuela Neumann, Deepak M. Sampathu, Linda K. Kwong, Adam C. Truax, Matthew C. Micsenyi, Thomas T. Chou, Jennifer Bruce, Theresa Schuck, Murray Grossman, Christopher M. Clark, Leo F. McCluskey, Bruce L. Miller, Eliezer Masliah, Ian R. Mackenzie, Howard Feldman, Wolfgang Feiden, Hans A. Kretzschmar, John Q. Trojanowski, Virginia M.-Y. Lee. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130-133. 24. Yong-Jie Zhanga, Ya-Fei Xua, Casey Cooka, Tania F. Gendrona, Paul Roettgesa, Christopher D. Linkb, Wen-Lang Lina, Jimei Tonga, Monica Castanedes-Caseya, PeterAsha, Jennifer Gassa, Vijayaraghavan Rangacharia, Emanuele Burattic, Francisco Barallec, Todd E. Goldea, Dennis W. Dicksona, and Leonard Petrucelli. (2009) Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. Proc. Natl Acad. Sci. 106, 7601-7612. 25. Lionel M. Igaz, Linda K. Kwong, Yan Xu, Adam C. Truax, Kunihiro Uryu, Manuela Neumann, Christopher M. Clark, Lauren B. Elman, Bruce L. Miller, Murray Grossman, Leo F. McCluskey, John Q. Trojanowski and Virginia M.-Y. Lee. (2008) Enrichment of C-terminal fragments in TAR DNA-binding protein-43 cytoplasmic inclusions in brain but not in spinal cord of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The American Journal of Pathology 173, 182-194. 26. Manuela Neumann, Ian R. Mackenzie, Nigel J. Cairns, Philip J. Boyer, William R. Markesbery, Charles D. Smith, J. Paul Taylor, Hans A. Kretzschmar, Virginia E. Kimonis, and Mark S. Forman. (2007) TDP-43 in the ubiquitin pathology of frontotemporal dementia with VCP Gene mutations. J. Neuropathol. Exp. Neurol. 66, 152-157. 27. M. Lamar Seibenhener, Jeganathan Ramesh Babu, Thangiah Geetha, Hing C. Wong,N. Rama Krishna, and Marie W. Wooten. (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24, 8055-8068. 28. M. Lamar Seibenhener, Thangiah Geetha, Marie W. Wooten. (2007) Sequestosome 1/p62 - More than just a scaffold. FEBS Letters 581, 175-179. 29. Geir Bjørkøy, Trond Lamark and Terje Johansen. (2006) p62/SQSTM1-A missing link between protein aggregates and the autophagy machinery. Autophagy 2, 138-139. 30. Serhiy Pankiv, Terje Høyvarde Clausen, Trond Lamark, Andreas Brech, Jack-Ansgar Bruun, Heidi Outzen, Aud Øvervatn, Geir Bjørkøy and Terje Johansen. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of Biological Chemistry 282, 24131-24145. 31. Yoshiharu Kawaguchi, Jeffrey J. Kovacs, Adam McLaurin, Jeffery M. Vance, Akihiro Ito and Tso-Pang Yao. (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115, 727-738. 32. Beth Levine and Guido Kroemer. (2008) Autophagy in the pathogenesis of disease. Cell 132, 27-42. 33. Mahaboobi Jaleel, Fabrizio Villa, Maria Deak, Rachel Toth, Alan R. Prescott, Daan M. F. VAN Aalten and Dario R. Alessi. (2006) The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem. J. 394, 545-555. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25855 | - |
| dc.description.abstract | SIK2 為AMPK 家族的一員,目前已知參與於荷爾蒙訊號傳導的調控和脂肪細胞的分化。然而SIK2 的其他功能目前仍不清楚。先前我們實驗室發現SIK2 和p97 有交互作用且調控ERAD。在本篇研究,我們探討SIK2 在處理蛋白質聚集體中所扮演的角色。我們使用MG132 和部分缺失的TDP43 來誘導包涵體和聚集體的形成。我們發現SIK2 和p97 坐落在蛋白質包涵體和聚集體上。當細胞表現沒有激酶活性的SIK2 或者減少其表現量時,會導致蛋白質聚集體增加,顯示SIK2 即有可能參與處
理蛋白質聚集體中。此外,SIK2 透過影響p97 的活性來調控蛋白質據集體的處理過程。進一步的研究顯示,SIK2 可能會影響自噬體的更新。 本篇研究顯示SIK2作為正向調控者,來影響蛋白質聚集體的降解。 | zh_TW |
| dc.description.abstract | SIK2 (salt-inducible kinase 2) belongs to members of AMPK family. The functions of SIK2 other than the regulation of insulin signal transduction and adipocyte differentiation are poorly understood. Recently, we showed that SIK2 interacts with p97 to regulate ER-associated protein degradation (ERAD). In this study, we further demonstrated that SIK2 plays important function in aggresome processing. Using proteasome inhibitor (e.g., MG132)- and C-terminal truncated TDP-43-induced inclusion bodies/aggresomes as models, we found that SIK2 and p97 co-localize to
aggresomes. Overexpression of SIK2 caused decrease while knockdown of SIK2 resulted in increase of inclusion bodies/aggresomes. It may facilitate aggresome processing through interacting with p97. Further experiments suggest that SIK2 may influence the turnover of autophagosomes. Our study demonstrated that SIK2 could serve as a positive regulator in autophagic-mediated protein degradation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:56:20Z (GMT). No. of bitstreams: 1 ntu-98-R96448006-1.pdf: 13710978 bytes, checksum: 72532fb69155cd7729b3a72a19696204 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Master Thesis …………………………………………………………………i
中文摘要 …………………………………………………………………....ii ABSTRACT.....................................................................................................iii CONTENTS ……………………………………………………………...…iv INTRODUCTION .............................................................................................1 MATERIAL AND MEHTODS ...........................................................................5 DNA constructs, shRNAs and antibodies ……………………..……………….5 Cell culture and transfection ……………...……………….………………6 Site-directed mutagenesis …………………………………...………………6 Analysis of soluble and insoluble fraction …………………...………………..7 Immunofluorescence staining and quantification of aggresome-containing cells …..7 Analysis of clearance of protein aggregates ………………………….………...8 RESULTS ………………………………………………………………9 Association p97 and SIK2 with inclusion bodies and aggresome …………………………9 SIK2 may regulate aggresome processing ……………………………………10 SIK2 is required for aggresome clearance ……………………………………11 p97 is a substrate of SIK2 ………………………………………………….12 SIK2 promotes aggresome processing through p97 S770 ……………….……..12 SIK2 is colocalized with p62 …………………………………………….…13 SIK2 may be involved in autophagy-mediated aggresome degradation…………..14 DISCUSSION ……………………………………………………………….15 REFERENCE ……………………………………………………………….18 FIGURES ……………………………………………………...………….. 25 Fig.1 Endogenous p97 and SIK2 associate with aggresome ……….…..……….29 Fig. 2 SIK2 may regulate aggresome processing ……………………….……..33 Fig.3 SIK2 is required for aggresome clearance ………………………….….. 35 Fig. 4 p97 is a substrate of SIK2 ………………………...………………….36 Fig. 5 SIK2 promotes aggresome processing through p97 S770 ………………..37 Fig. 6 SIK2 is colocalized with p62 …………………………………………38 Fig. 7 SIK2 is involved in autophagic-mediated aggresomes degradation ……….39 | |
| dc.language.iso | en | |
| dc.subject | p97 | zh_TW |
| dc.subject | SIK2 | zh_TW |
| dc.subject | 蛋白質聚集體 | zh_TW |
| dc.subject | p97 | en |
| dc.subject | SIK2 | en |
| dc.subject | aggresomes | en |
| dc.title | SIK2在處理蛋白質聚集體中所扮演的角色 | zh_TW |
| dc.title | The Role of SIK2 in Aggresome Processing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 施修明,吳君泰 | |
| dc.subject.keyword | SIK2,p97,蛋白質聚集體, | zh_TW |
| dc.subject.keyword | SIK2,p97,aggresomes, | en |
| dc.relation.page | 39 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 13.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
