Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25842Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 管希聖(Hsi-Sheng Goan) | |
| dc.contributor.author | Chung-Hsiang Hsu | en |
| dc.contributor.author | 許仲翔 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:32:59Z | - |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | [1] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature 393,133 (1998).
[2] W. Kohn and J. M. Luttinger. Theory of donor levels in silicon. Phys. Rev. 97, 1721 (1955). [3] M.J.Calderon, Belita Koiller, Xuedong Hu, and S. Das Sarma. Quantum Control of Donor Electrons at the Si-SiO2 Interface.Phys. Rev. Lett. 96, 096802 (2006). [4] R. A. Faulkner. Higher donor excited states for prolate-spheroid conduction bands: A re-evaluation of silicon and germanium. Phys. Rev. 184, 713 (1969). [5] C. J. Wellard, L. C. L. Hollenberg, F. Parisoli, L. M. Kettle, H.-S. Goan, J. A. L. McIntosh, and D. N. Jamieson. Electron exchange coupling for singledonor solid-state spin qubits. Phys. Rev. B 68, 195209 (2003). [6] B. Koiller, X. Hu, and S. Das Sarma. Strain effects on silicon donor exchange: Quantum computer architecture considerations. Phys. Rev. B 66, 115201 (2002). [7] S. T. Pantelides. The electronic structure of impurities and other point defects in semi-conductors. Rev. Mod. Phys. 50, 797 (1978). [8] R. L. Aggarwal and A. K. Ramdas. Effect of uniaxial stress on the excitation spectra of donors in silicon. Phys. Rev. 137, A602 (1965). [9] James Clerk Maxwell. A Treatis on Electricity and Magnetism (Oxford Uni-versity Press,1891). [10] A. J. Skinner, M. E. Davenport, and B. E. Kane. Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach. Phys.Rev.Lett.90,087901 (2003). [11] B. E. Kane, N. S. McAlpine, A. S. Dzurak, R. G. Clark, G. J. Milburn, He Bi Sun, and Howard Wiseman. Single-spin measurement using single-electron transistors to probe two-electron systems. Phys. Rev. B 61, 2961 (2000). [12] C. Kittel. Introduction to Solid State Physics (Wiley, New York, 1986). [13] P. Y. Yu and M. Cardona. Fundamentals of Semiconductors (Springer-Verlag,Berlin,1996). [14] M. L. Cohen and T. K. Bergstresser. Band structures and pseudopotential form factors for fourteen semiconductors of the diamond and zinc-blende structures. Phys. Rev. 141,789 (1966). [15] D. Schechter. Analysis of the Fermi-contact interactions of the shallow-donor electron in phosphorus-doped silicon. Phys. Rev. B 9, 1751 (1974). [16] I. S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series, and Products (Academic Press, New York, 2000). [17] S. T. Pantelides. The electronic structure of impurities and other point defects in semi-conductors. Rev. Mod. Phys. 50, 797 (1978). [18] J.D. Jackson. Classical Electrodynamics, third edition (John Wiley & Sons, Inc., New York, 1999). [19] L. M. Kettle, Hsi-Sheng Goan, and Sean C. Smith. Molecular orbital calculations of two-electron states for P-donor solid-state spin qubits. Phys. Rev. B 73, 115205 (2006). [20] D. B. MacMillen and U. Landman, Variational solutions of simple quantum systems subject to variable boundary conditions. II. Shallow donor impurities near semiconductor interfaces: Si, Ge Phys. Rev. B 29, 4524 (1984). [21] T. Ando, A. Fowler, and F. Stern, Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437 (1982). [22] G. Smit et al.,Gate-induced ionization of single dopant atoms Phys. Rev. B 68, 193302(R) (2003). [23] A. A. Larionov, L. E. Fedichkin, A. A. Kokin, and K. A. Valiev. The nuclear magnetic resonance spectrum of 31P donors in a silicon quantum computer. Nanotechnology 11,392 (2000). [24] C. J. Wellard, L. C. L. Hollenberg, and C. I. Pakes. Single-qubit operations on the Kane quantum computer. Nanotechnology 13, 570 (2002). [25] L. Laudau and E. Lifshitz, Quantum Mechanics (Pegramon, New York, 1977) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25842 | - |
| dc.description.abstract | In the Kanes proposal of a silicon-based quantum computer architecture, the information are encoded by a array of nuclear spins of 31P as qubits, which are embedded in the isotropically pure 28Si base. Logical gate operations on the qubits are performed by varying external magnetic fields and the electrostatic potential of A-gates,and J-gates, which perturb the electron density to change the strength of hyper ne interaction on individual qubits and exchange interaction between neighbouring qubits.For simplicity, we consider the case that the electric eld is generated by two parallel conducting plates, instead of A and J gate.
In this thesis, we focus on simulating the donor electron wave function in the presence of boundaries under the application of an electric field for different device parameters: donor depth, strength of the electric field, and boundary image charges. We calculate the donor electron wave function including the anisotropy of the effective masses in Si, from single-valley to multi-valley using the basis expansion method. We include the boundary image charge effect in our device geometry as was done in M.J.Calderon et al.’s work (M.J.Calderon et al., Phys. Rev. Lett. 96, 096802, 2006), which have calculated the average position of the trial ground state using variational method under the external application of a linear electric eld in different donor depthand estimate the value of their corresponding critical field which can be used to assess the tunnelling time for donor electron ionization. In comparison with M.J.Calderon et al.’s work, we obtain similar results with theirs. Also, we calculate the contact hyperfine coupling energy as function of the strength of electric field in different donor depth. We aim to get physical insight and provide valuable information for the Kane’s quantum computer architecture. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:32:59Z (GMT). No. of bitstreams: 1 ntu-95-R93222040-1.pdf: 762531 bytes, checksum: be018fcb632f7ab7121320f9de3d1215 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 1 Introduction ................................... 1
2 Theory ......................................... 5 2.1 Background Theory to Calculate Donor Electron Wave Function ......................................... 5 2.1.1 Silicon Crystal Bloch Functions ............ 5 2.1.2 The Exact Form ............................. 8 2.2 Effective Mass Theory ....................... 12 2.2.1 Single-Valley Effective Mass Theory ....... 12 2.2.2 Multi-Valley Effective Mass Theory ........ 18 2.3 Image Charge Theory ......................... 25 2.3.1 Two Dielectric Materials Problem .......... 26 2.3.2 Three Dielectric Materials Problem ........ 28 3 Numerical Simulation .......................... 40 3.1 The Geometry we consider .................... 41 3.2 Results of Numerical Simulation and Conclusion........................................46 3.2.1 Comparison of our Fc results with Calderon’s work .............................................46 3.2.2 The contact hyperne coupling energy ...... 56 References ...................................... 59 | |
| dc.language.iso | en | |
| dc.subject | 量子電腦 | zh_TW |
| dc.subject | quantum computer | en |
| dc.subject | Kane | en |
| dc.title | Kane量子電腦元件的模擬計算 | zh_TW |
| dc.title | Device modelling in the Kane quantum computer architecture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡崇德(Chong-Der Hu),高英哲(Ying-Jer Kao) | |
| dc.subject.keyword | 量子電腦, | zh_TW |
| dc.subject.keyword | Kane,quantum computer, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2006-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-95-1.pdf Restricted Access | 744.66 kB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
