Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25813
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Yang)
dc.contributor.authorYi-Ming Kuoen
dc.contributor.author郭逸民zh_TW
dc.date.accessioned2021-06-08T06:31:24Z-
dc.date.copyright2006-07-29
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation參考文獻
1. Botchwey EA, Pollack SR, Levine EM, Laurencin CT. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system J Dent Res 84 (6) 2001 May;55(2):242-53.
2. Michael Shin, Ph.D. Hiroshi Yoshimoto , M.D..Ph.D. and Joseph P.
Vacanti.M.D.,In vivo bone tissue engineering using mesenchymal stem cells on a novel electronspun nanofibrous scaffold. Tissue engineering, volume 10 number 1-2, 2004
3 . M. Endres, MSc, D.W. Hutmacher, PhD, MBA, A.J. Salgado, BSc, C. Kaps, PhD, J. Ringe, MSc, R.L. Reis, PhD, M. Sittinger, PhD, A. Brandwood, PhD, J.T. Schantz, PhD. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng. 2003;9(4):689-702.
4. Masi L, Franchi A, Santucci M, Danielli D, Arganini L, Giannone V, Formigli L, Benvenuti S, Tanini A, Beghe F, et al. Adhesion, growth, and matrix production by osteoblasts on collagen substrata. Calcif Tissue Int. 1992 ;51(3):202-12.
5. Kinoshita S, Finnegan M, Bucholz RW. Three-dimensional collagen gel culture promotes osteoblastic phenotype in bone marrow derived cells. Kobe J Med Sci. 1999 ;45(5):201-11.
6. Manjubala,Alexander Woesz, Christine Pilz,Monika Rumpler,
Nadja- Fratzl-Zelman, Paul Roschger, Juergen Stample, Peter Fratzl
Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J Mater Sci Mater Med. 2005 ;16(12):1111-9.
7. Shulamit Levenberg , Ngan F. Huang , Erin Lavik , Arlin B. Rogers , Joseph Itskovitz-Eldor , and Robert Langer , Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds.
Proc Natl Acad Sci U S A. 2003 28;100(22):12741-6.
8. Fei Yanga, Xue Qua, Wenjin Cuia, Jianzhong Beia, Fangyuan Yub,
Shibi Lub, Shenguo Wanga, Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds Biomaterials 2006;27:4923–4933.
9. K. Rezwana, Q.Z. Chena, J.J. Blakera, Aldo Roberto Boccaccini
Biodegradable and bioactive porous polymer/inorganic composite
scaffolds for bone tissue engineering.Biomaterials. 2006 ;27(18):
3413-31.
10. O. Zinger, um model surfaces featuring scale-resolved topography. Biomaterials. 2004 ;25(14):2K. Anselme, A. Denzer, P. Habersetzer, M. Wieland, J. Jeanfils, P. Hardouin and D. Landolt, Time-dependent morphology and adhesion of osteoblastic cells on titani695-711.
11.Nishikawa T, Arai K, Hayashi J, Hara M, Shimomura M. Honey
comb films: Biointerface for tissue engineering. Int J Nanoscience
2002; 1: 415-418
12. Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electronspun nanofibrous scaffold. Tissue Eng 2004; 10: 33-41
13. Shin YM, Hohman MM, Brenner MP, Rutledge GC. Experimental characterization of electrospinning: The electrically forced jet and instabilities. Polymer 2001; 42: 9955-9967.
14. K. Tuzlakoglu, N. bolgen, A. J. Salgado, M. E. Gomes, E. Piskin, R. L. Reis, Nano- and micro-fiber combined scaffolds: a new architecture for bone tissue engineering.J Mater Sci Mater Med. 2005 ;16(12):1099-104.
15. Zhensheng Li, Miqin Zhang, Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res A. 2005 1;75(2):485-93.
16 Granet C, Laroche N, Vico L, Alexandre C, Lafage-Proust MH. Rotating-wall vessels, promising bioreactors for osteoblastic cell culture: comparison with other 3D conditions. Med Biol Eng Comput 1998;36:513–519
17. Qiu Q, Ducheyne P, Gao H, Ayyaswamy P . Formation and differentiation of three-dimensional rat marrow stromal cell culture on microcarriers in a rotating-wall vessel. Tissue Eng 1998;4:19–34
18. Lo, C-M., Wang, H-B., Dembo, M. & Wang, Y,-I, Richard O. Hynes, Schwartz, M. A. & Ginsberg, M. II, Integrins: Bidirectional, Allosteric Signaling Machines , Biophys. J. 2002; 79, 144-152.
19. Ng KW, Leond DT, Hutmacher DW, The challenge to measure Cell Proliferation in two and three dimensions. Tissue Eng. 2005; 11(1):
182-91.
20.Beningo KA, Dembo M, Wang YL. Responses of fibroblasts to anchorage of dorsal extracellular matrix receptors. Proc Natl Acad Sci U S A. 2004 28;101(52):18024-9. Epub 2004 Dec 15.
21.Donggang Yao , Aaron Smith, Pratapkumar Nagarajan , Adrian Vasquez , Loan Dang , G. Rasul Chaudhry Fabrication of polycaprolactone scaffolds using a sacrificial compression-molding process. Journal of biomedical materials research, 2006; 77B( 2):
287-295.
22. Dennis Rohner , Dietmar W. Hutmacher , Tan Kim Cheng , Martin Oberholzer , Beat Hammer,In Vivo Efficacy of Bone-Marrow-Coated Polycaprolactone Scaffolds for the reconstruction of orbital defects in the pig. J Biomed Mater Res B Appl Biomater. 2003 15;66(2):
574-80.
23.Jan-Thorsten Schantz, M.D.,Dietmar Werner Hutmacher, Ph.D.,M.B.A., Repair of Calvarial Defects with Customised Tissue-Engineered Bone Grafts , Tissue Engineering .2003;9(1): 113-123.
24. Sumona Sarkara, George Y. Lee, Joyce Y. Wong, Tejal A. Desai, Development and characterization of a porous micro-patterned
scaffold for vascular tissue engineering, Biomaterials. 2006; 27: 4775–4782
25.Hutmacher DW, Zein I, Teoh SH, Ng KW, Schantz JT, Leady JC. Design and fabrication of a 3D scaffold for tissue engineering bone. In: Synthetic Bioabsorbable Polymers for Implants. West Conshohocken, PA: ASTM; 2000. p 152-167
26.Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactones scaffold designed and fabricated by fused deposition modeling.
J Biomed Mater Res 2001; 55: 203-216
27.Cao T, Ho KH, Teoh SH. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng 2003; 9: S103-S112
28.Wang F, Shor L, Darling A, Khalil S, Sun W, Guceri S, Lau A. Precision extruding deposition and characterization of cellular poyl- -caprolactone tissue scaffold. Rapid Prototyping 2004; 10: 42-49
29. H. Cai a, G. Azangwea and D.E.T. Shepherd b,
Skin cell culture on an ear-shaped scaffold created by fused deposition modelling. Biomed Mater Eng. 2005;15(5):375-80.
30. Yongnian Yan, Xiaohong Wang, Yuqiong Pan, Haixia Liu, Jie Chen
Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique Biomaterials. 2005;26:5864–5871
31. Inanc B,Elcin AE,Elcin YM, Osteogenic Induction of Human Periodontal Ligament Fibroblasts Under Two-and Three-Dimensional Culture Conditions,Tissue Engineering,2006; 12(2):257-265
32.Williamson MR, Adams EF, Coombes AG.,Gravity spun polycaprolactone fibres for soft tissue engineering: Interaction with fibroblasts and myoblasts in cell culture,
Biomaterials. 2006 ;27(7):1019-26.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25813-
dc.description.abstract摘要
細胞在三維空間(3D)中環境較在二維平面(2D)複雜,例如在細胞貼附、細胞聚集、細胞移動、細胞形狀、細胞增生分化、細胞基因表現、細胞和細胞外間質之間的影響及細胞與細胞之間的訊息傳遞等行為表現上都可能有所差異。
人體組織細胞大多數是處於由細胞外間質所建構的三維空間中,為模擬細胞在體內的情形,設計體外實驗將細胞培養在3D空間中,並與2D平面的生長情形作比較。
本實驗使用的細胞是類成骨母細胞MG63,材料選擇是聚己內酯polycaprolactone (PCL),基材的型式為薄膜及3D立體支架。支架是採用快速原型技術中的fused deposition method(FDM)所製造,設計的支架孔洞有三種孔徑尺寸,分別為#300um、#250um、#200um,上述尺寸表示3D支架中相鄰二條PCL fiber的中心線距,而每條PCL fiber的寬徑平均為130um。
MG63種植在2D的實驗結果顯示:Tissue culture plate及PCL薄膜上的形態為紡錘狀;反觀在3D的支架上,細胞有聚集現象且被細胞外間質包覆而呈現立體架構,而後漸漸的將孔洞表面完全覆蓋填滿。三種支架孔徑尺寸的細胞活性測試結果以細胞生長在孔徑尺寸為#200um最良好。MG63培養在二層膜系統中,上下層薄膜都能檢測到細胞活性及觀察到細胞附著形態。
生長於鈣化誘導培養液中的MG63細胞,其鹼性磷酸酶(Alkaline phosphatase),基因表現隨著時間遞增而增加,且在3D PCL支架比在2D PCL薄膜明顯。
zh_TW
dc.description.abstractAbstract
The mechanism of the cells grow in the three dimensional environment (3D) is more complicate than that two dimensional surface (2D), The behavior of the cells is different, in terms of cell attachment, cell aggregation, cell migration, cell shape, cell proliferation and differentiation, gene expression, the interaction between cell and extracellular matrix etc.
In living tissue, the cells mostly exist and connect with ECM components, which integrated into 3D framework. To simulate the growth of the cells in vivo, we cultured the MG63 osteoblastic cells in 3D scaffold, which is polycaprolactone (PCL) and fabricated via fused deposition method. The diameter of PCL fiber of 3D scaffolds is 130um. The size of interconnected pore of 3D scaffold is expressed as the distance between two adjacent PCL fibers and three sizes of #300um, #250um, and #200um were designed.
The morphology of MG63 cells seeded into PCL scaffold were examined by SEM. The MG63 cells cultured on 2D surface, including tissue culture plate and PCL membrane is flat and spindle in shape. However, the cells cluster intermingled with extracellular matrix was noted in 3D scaffold.
The cell proliferation and connection of the cells attached on adjacent PCL fibers increased with culture period, followed by filling-in of the superficial pores of 3D scaffolds.
The cell viability was aided by MTT assay, which indicated the growth of MG63 cells in our study. The results of MTT assay demonstrated the cellular growth in #200um scaffold was the best among the three scaffolds with different pore-sizes in our study.
To provide the substrate for cell adhesion in the 2-dimensional culture surface, the cells grown on the PCL membrane were covered with another PCL membrane, which made MG63 cells interposed between upper and lower membranes. The cell viability and cell attachment to the upper membrane was detected. Moreover, the total viability on upper and lower membranes was higher than that on single membrane.
The gene expression of osteogenic marker, alkaline phosphatase, of MG63 cells was assayed by polymerase chain reaction (PCR) technique, after the MG63 cells were cultured in osteogenic medium for 2 weeks and 4 weeks. Our preliminary results showed that the expression of ALP increased with culture time and was significantly higher in 3D PCL scaffold than on PCL membrane.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:31:24Z (GMT). No. of bitstreams: 1
ntu-95-R93548035-1.pdf: 3568400 bytes, checksum: a60618c67fb3608a0a4911024710dceb (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄
摘要……………………………………………………………………….I
Abstract……………………………………………………………….III
目錄……………………………………………………………………..IV
圖目錄…………………………………………………………….....VII
表目錄 ………………………………………………………………..IX
第一章 緒論…………………………………………………………..…1
第二章 文獻回顧………………………………….…………………….3
2.1骨頭的形成……………………………………………………….….3
2.2 二維與三維環境………………………………………………….…5
2.3 材料的特性…………………………………………………………8
2.4 支架的製作………………………………………………………..10
2.5 成骨指標蛋白……………………………………………………..11
2.6 催鈣化藥劑………………………………………………………..12
第三章 材料及方法…………………………………………………….13
3.1 原料與樣品………………………………………………………..13
3.2 藥品配製………………………………………………………....16
3.3 儀器……………………………………………………………....18
3.4 材料製備………………………………………………………....22
3.4.1 PCL 薄膜製備………………………………………………....22
3.4.2 PCL 支架製備……………………………………………...22
3.5 細胞培養………………………………………………………....23
3.6 MTT試驗程序……………………………………………………...24
3.7 LDH試驗程序……………………………………………………...25
3.8 SEM様品的準備…………………………………………………...26
3.8.1 酒精脫水……………………………………………………....26
3.8.2 冷凍乾燥…………………………………………………...26
3.9 RT-PCR實驗………………………………………………………..27
3.9.1 抽取RNA程序…………………………………………….….27
3.9.2 RT程序………………………………………………………...28
3.9.3 PCR程序…………………………………………………....29
3.10 組織染色………………………………………………………….30
3.10.1冷凍切片…………………………………………………….30
3.10.2 H & E 染色…………………………………………………30
3.10.3 蔗糖溶液的製備……………………………………………30
第四章 結果與討論………………………………………………….…32
4.1 單層PCL薄膜上的MG63細胞形態觀察及活性測試………….....32
4.2 二層PCL薄膜系統上的MG63細胞形態觀察及活性測試…….....33
4.3 PCL立體支架上的MG63細胞形態觀察及活性測試……………...36
4.4 MG63細胞成骨蛋白基因的表現……………………………….….40
第五章 結論………………………………………………………….…42
第六章 未來研究方向………………………………………………….43
圖表……………………………………………………………………..44
參考文獻………………………………………………………………..64









圖目錄
圖1:製作PCL立體支架的快速原型加工機器圖……………..…….44
圖2:MG63類成骨母細胞培養於TCPS上之光學顯微鏡照片……....45
圖3:MG63類成骨母細胞培養於PCL薄膜之掃描式電子顯微鏡照
片……………………………………………………………….......46
圖4:MG63類成骨母細胞培養於PCL薄膜及TCPS的細胞活性表現
(細胞密度=1x105/well)…………………………………………....47
圖5:MG63類成骨母細胞培養於PCL薄膜及TCPS的細胞活性表現
(細胞密度=4x105/well)…………………………………………....48
圖6:將MG63類成骨母細胞培養於二層PCL薄膜系統之電子顯微
鏡形態觀察…………………………………………………….......49
圖7:MG63類成骨母細胞培養於二層PCL薄膜的截面電子顯微鏡照
片………………………………………………………………….....50
圖8:生長於兩層PCL薄膜之間及單層PCL薄膜上的MG63類成骨
母細胞的生長活性(1x105/well)……………………………….....51
圖 9:生長於兩層PCL薄膜之間及單層PCL薄膜上的MG63類成骨母
細胞的生長活性(4x105/well)………………………………….....52
圖10:MG63類成骨母細胞培養於孔徑尺寸為#200um的PCL支架之電
子顯微鏡照片………………………………………………….......53
圖11:MG63類成骨母細胞培養於孔徑尺寸為#250um的PCL支架之
電子顯微鏡照片……………………………………………….......54
圖12:MG63類成骨母細胞培養於孔徑尺寸為#250um的PCL支架的
截面電子顯微鏡之照片……………………………………….......55
圖13:MG63類成骨母細胞培養於孔徑尺寸為#300um的PCL支架之電
子顯微鏡照片………………………………………………….......56
圖14:MG63類成骨母細胞培養於孔徑尺寸為#300um的PCL支架之電
子顯微鏡照片………………………………………………….......57
圖15:MG63類成骨母細胞培養於PCL支架生長流程示意圖………..58
圖16:MG63類成骨母細胞培養於孔徑尺寸為#300um的PCL支架的截
面組織切片H&E染色…………………………………………........59
圖17:MG63類成骨母細胞培養於孔徑尺寸為#200um、#250um、
#300umPCL 支架上的MTT分析結果………………………..........60
圖18:MG63類成骨母細胞培養於孔徑尺寸為#300um的PCL 支架上
的LDH活性……………………………………………………........61
圖19:MG63類成骨母細胞於PCL薄膜與3D支架的成骨指標蛋白基因
表現……………………………………………………………......62

表目錄
表1、聚合酶連鎖反應(PCR)所用之引子的序列及相關資料………..63
dc.language.isozh-TW
dc.subject類成骨母細胞zh_TW
dc.subject三維支架zh_TW
dc.subject聚己內酯zh_TW
dc.subjectPolycaprolactoneen
dc.subjectMG63en
dc.subjectPCLen
dc.subject3Den
dc.titleMG63類成骨母細胞在聚己內酯立體支架中的生長zh_TW
dc.titleGrowth of Osteoblastic cells (MG63) on 3-dimensional scaffolds of polycaprolactoneen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor陳羿貞(Yi-Jane Chen)
dc.contributor.oralexamcommittee陳敏慧,鄭廖平
dc.subject.keyword類成骨母細胞,聚己內酯,三維支架,zh_TW
dc.subject.keywordMG63,Polycaprolactone,3D,PCL,en
dc.relation.page68
dc.rights.note未授權
dc.date.accepted2006-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved