Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25800
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳信志(Shinn-Chih Wu)
dc.contributor.authorPo-Hao Chengen
dc.contributor.author鄭博豪zh_TW
dc.date.accessioned2021-06-08T06:30:44Z-
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-07-24
dc.identifier.citation參考文獻
林之任。2002。攜帶α-乳白蛋白�人類第八凝血因子轉機因小鼠及轉基因乳山羊之產製與分析。國立台灣大學畜產學系研究所碩士論文。
林育聖。2004。攜帶豬胰澱粉酶啟動子/纖維素分解酶、植酸分解酶基因轉殖小鼠及基因轉殖豬之產製與分析。國立台灣大學畜產學研究所碩士論文。
宋麗英。1999。牛胚體外生產技術之開發及其在基因轉殖之應用。國立台灣大學畜產學研究所碩士論文。
吳信志。1990。培養液中添加內泌素和豬濾泡液對豬卵母細胞于體外成熟和受精發育能力之影響。國立中興大學畜牧學研究所碩士論文。
吳信志。1999。豬乳鐵蛋白及人類凝血第九因子基因轉殖小鼠及基因轉殖豬之產製及分析。國立台灣大學畜產學研究所博士論文。
Abeydeera, L. R., W. H. Wang, T. C. Cantlry, A. Rieke, and B. N. Day. 1998. Coculture with follicular shell pieces can enhance the development competence of pig oocytes after in vitro fertilization:Relevance to intracellular glutathione. Biol. Reprod. 58:213-218.
Abeydeera, L. R. 2002. In vitro production of embryos in swine. Theriogenology. 57:257-273.
Balter, A. E. S., M. A. L. Oliveira, and M.T. J. Catanho. 2000. Bovine cumulus-oocyte complex:Quantification of LH/hCG receptors. Mol. Reprod. Dev. 55:433-437
Barnes, F. L. and N. L. First. 1991. Embryonic transcription in in vitro culture bovine embryos. Mol. Repord. Dev. 29:117-123.
Bement, W. M. and D. G. Capco. 1991. Parallel pathways of cell cycle control during Xenopus egg activation. Proc. Natl. Acad. Sci. USA 88:5172-5176.
Blondin, P., and M. A. Sirard. 1995. Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes. Mol. Reprod. Dev. 46:1191-1203.
Bureau, M., J. L. Bailey, and M. A. Sirard. 2000. Influence of oviductal cells and conditioned medium on porcine gamates. Zygote 8:139-144.
Carolan, C., P. Lonergan, H. Khatir, and P. Merillod. 1996. In vitro production of bovine embryos using individual oocytes. Mol.Reprod. Dev. 45:145-150.
Canipari, R. 2000. Oocyte--granulosa cell interactions. Hum Reprod Update 6: 279-289.
Chian, R. C., Niwa K. 1994. Effect of cumulus cells present during different periods of culture on maturation in vitro of bovine oocytes. Theriogenology 41:176.
Chian, R. C., S. L. Tan, and M. A. Sirard. 1999. Protein phosphorylation is essential for formation of male pronucleus in bovine oocytes.Mol. Reprod. Dev. 52:43-49.
Clark S.G., K. Haubert, D. J. Beebe C. E. Ferguson and M. B. Wheeler. 2005. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization. Lab Chip 5:1229-1232.
Cohen, P. 1989. The structure and regulation of protein phosphatasees. Ann. Rev. Biochem. 58:453-508.
Colman, A.1996. Production of proteins in the milk of transgenic livestock: problems, solutions, and successes. Am. J. Clin. Nutr. 63:639-645.
Dai, Y., T. D. Vaught, J. Boone, S. H. Chen, C. J. Phelps, S. Ball, J. A.Monahan, P. M. Jobst, K. J. McCreath, A. E. Lamborn, J. L. Cowell-Lucero, K. D. Wells, A. Colman, I. A. Polejaeva and D. L. Ayares. 2002. Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nature Biotechnol. 20:251-255.
Day, B. N. 2000. Reproductive biotechnologies: Current status in porcine reproduction. Anim. Reprod. Sci. 60-61: 161-172.
Deacon, T., J. Schumacher, J. Dinsmore, C. Thomas, P. palmer, S. Kott, A. Edge, D. Penny, S. Kassissieh, P. Dempsey, and O. Isacson. 1997. Histological evidence of fetal pig neutral cell survival after transplantation into a patient with Parkinson,s disease. Nat. Med. 3:350-353.
Dekel, N. and W. H. Beers. 1980. Development of the rat oocyte in vitro: inhibition abd induction of maturation in the presence or absence of the cumulus oophorus. Dev. Biol. 75:247-254.
Edge, A. S., M. E. Gosse, and J. Dinsmore. 1998. Xenogeneic cell therapy: Current progress and future developments in porcine cell transplantation. Cell Transplant 7: 525-539.
Eppig, J. J. and S. M. Downs. 1984. Chemical signals that regulate mammalian oocyte maturation. Biol. Reprod. 30:1-11.
Fink, J. S., J. M. Schumacher, S. L. Ellias, E. P. Palmer, M. Saint-Hilaire, K. Shannon, R. Penn, P. Starr, C. VanHoorne, H. S. Kott, P. K. Dempsey, A.J. Raineri,D. Manhart, J. Dinsmore, and O. Isacson. 2000. Porcine xenografts in Parkinson,s disease and Huntington,s disease patients:preliminary results. Cell Transplant. 2;273-278.
Fortune, J. E. 1994. Ovarian follicular growth and development in mammals. Biol. Reprod. 50: 225-232.
Funahashi, H. 2003. Polyspermic penetration in porcine IVM-IVF systems. Reprod. Fertil. Dev. 15: 167-177.
Funahashi, H. and B. N. Day. 1993. Effects of follicular fluid at fertilization in vitro on sperm penetration in pig oocyte. J. Reprod. Fertil. 99:97-103.
Funahashi, H. and B. N. Day. 1995. Effects of cumulus cells on glutathione contant of porcine oocyte during in vitro maturation. J. Anim. Sci. 73 (suppl. 1)90.(abstr.)
Furger, C., L. Cronier, C. Poiret, and M. Pouchelet. 1996. Human granulosa cells in culture exhibit functional cyclic AMP regulated gap junctions. Mol. Hum Reprod 2:541-548.
Galeati, G., S. Modina, A. Lauria, and M. Mattioli. 1991. Follicle somatic cells influence pig oocyte penetrability and cortical granule distribution. Mol. Reprod. Dev. 29:40-46.
Garder, D. K., M. Lane, A. Spitzer, and P. A. Batt. 1994. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acid, vitamins and culturing embryos in groups stimulate development. Biol. Report. 50:390-400.
Gilbert, S. F. 1997. Fertilization : Beginning a new organism. In Development biology. 5th edition. pp.121-165. Sinauer Associatiates, USA.
Gordon, J. W., G. A. Scangos, D. J. Plotkin, J. A. Barbosa and F. H. Ruddle. 1980. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. (USA) 77:7380-7384
Gordon, I. 1994. Laboratory production of cattle embryos. CAB international Cambridge.
Guraya, S. S. 1985. Biology of ovarian follicles in mammalian. Springer-Veralg. New York Tokyo.
Hafez, E. S. E. 1987. Transport and survival of gametes. In: E. S. E. Hafez, Reproduction in farm animals, 5th edition. Lea Febiger, Philadelphia. pp.168-188.
Homa, S. T., and C. A. Brown. 1992. Changes in linoleic acid during follicular development and inhibition of spontaneous breakdown of germinal vesicles in cumulus-free bovine oocytes. J. Reprod. Fertil. 94:153-160.
Humpherson, P. G., H. J. Leese, and R. G. Sturmey. 2005. Amino acid metabolism of the porcine blastocyst. Theriogenology 64: 1852-1866.
Hunter, M. G. 2000. Oocyte maturation and ovum quality in pigs. Rev Reprod 5: 122-130.
Imaizumi, T., K. L. Lankford, W. V. Burton, W. Fodor, J. D. Kocsis. 2000. Xnotransplantation of transgenic pig olfactory ensheathing cells promotes axonal regeneration in rat spinal cord. Nat. Biotechnol. 16:949-953.
Izadyar, F., B, Colenbrander, and M. M. Bevers. 1996. In vitro maturation of bovine oocytes in the presence of growth hormone accelerates nuclear maturation and promotes subsequent embryonic development. Mol. Repord. Dev. 45:372-377.
Izadyar, F., G.. Dijkstra, H. T. A. Van Tol, A. J. M. Den Eijnden-van Raaij, R. M. Den Hurk, B. Colenbrander, and M. M. Beves. 1998. Immunohistochemical localization and mRNA expression of activin, inhibin, follistathin, and activin receptor in bovine cumulus-
oocyte complexes during in vitro maturation. Mol. Reprod. Dev. 49:186-195.
Kidson, A., editor. 2004. In vitro embryo development in the pig: impact of oocyte maturation milieu on blastocyst morphology and viability. DPP-Utrecht, Houten, Proefschrift Universiteit Utrecht.
Kikuchi, K. 2004. Development competence of porcine blastocysts produced in vitro. J. Reprod. Dev. 50:21-28.
Kim, N. H., B. N. Day, J. G. Lim, H. T. Lee, and K. S. Chung. 1997. Effect of ovidual fluid and heparin on fertility and characteristics of porcine spermatozoa. Zygote 5:61-65.
Kim, H. S. et al. 2004. Improved in vitro development of porcine embryos with different energy substrates and serum. Theriogenology 61: 1381-1393.
Koetsier, P. A., J. Schorr and W. Doerfler. A rapid optimized protocol for downward alkaline Southern blotting of DNA. BioTechniques. 15:260-262.
Kouba, A. J., L. R. Abeydeera, I. M. Alvarez, B. N. Day, and W. C. Buhi. 2000. Effects of the porcine oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic development in vitro. Biol. Reprod. 63: 242-250.
Lane, M. and D. K. Gardner. 1992. Effect of incubation volume andembryo density on development and viability of mouse embryo in vitro. Hum. Reprod. 7:558-562.
Lai, L., D. Kolber-Simond, K. W. Park, H. T. Cheong, J. L. Greenstein, G. S. Im, M. Samuel, A. Bonk, A. Rieke, B. N. Day, C. N. Murphy,D. B. Carter, R. J. Hawley and R. S. Prather. 2002. Production of a-1,3-Galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092.
Lin, T. P. 1966. Microinjection of mouse eggs. Science 151:333-337.
Li, Y. H. et al. 2003. Reduced polyspermic penetration in porcine oocytes inseminated in a new in vitro fertilization (IVF) system: Straw IVF. Biol. Reprod. 69: 1580-1585.
Liu, R. H., Y. H. Li, L. H. Jiao, X. N. Wang, H. Wang, and W. H. Wang. 2002. Extracellular and intracellular factors affecting nuclear and cytoplasmic maturation of porcine oocytes collected from different sizes of follicles. Zygote 10:253-263.
Luvoni, G.. G.., L. Keskintepe, and B. G. Brackett. 1966. Improvement in bovine embryo production in vitro by glutathione-containing culture media. Mol. Repord. Dev. 43:437-443.
Mauro, M., and B. Barbara. 2000. Signal transduction mechanism for LH in the cumulus–oocyte complex. Mol. Cell Endocrinoloy. 161:19-23.
Mattioli, M., L. Gioia, and B. Barboni. 1998. Calcium elevation in sheep cumulus-oocyte complexes after luteinizing hormone stiumulation. Mol. Reprod. Dev. 50:361-369.
McCauley, T. C. et al. 2003. Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biol. Reprod. 69: 828-834.
Miyano, T., Y. Dai, J. Lee, K. Kano, and R. M. Moor. 2000. Degradation of pig cyclin b1 molecules precedes map kinase dephosphorylation during fertilisation of the oocytes. Zygote 8: 153-158.
Moor, R. M., and A. O. Trounson. 1977. Hormonal and follicular facters affecting maturation of sheep oocytes in vitro and their subsequent development capacity. J. Reprod. Fertil. 49:101-109.
Motlk, J., and M. Kubelka. 1990 Cell-cycle aspects of growth and maturation of mammalian oocytes. Mol.Reprod. Dev. 27:366-375.
Nagai, N. 2000. The improvement of in vitro maturation system for bovine and porcine oocytes. Theriogenology 55:1291-1301.
Nakai M., N. Kashiwazaski, A. Takizawa, Y. Hayashi, E. Nakatsukasa, D. Fuchimoto, J. Noguchi, H. Kaneko, M. Shino and K. Kikuchi. 2003. Viable piglets gnerated from porcine oocytes matured in vitro and fertilized by intracytoplasmic sperm head injection. Bio. Reprod. 68:1003-1008.
Naruse, K. et al. 2005. Production of a transgenic pig expressing human albumin and enhanced green fluorescent protein. J. Reprod. Dev. 51: 539-546.
Niemann, H., and W. A. Kues. 2000. Transgenic livestock: Premises and promises. Anim. Reprod. Sci. 60-61: 277-293.
Niemann, H., and W. A. Kues. 2003. Application of transgenesis in livestock for agriculture and biomedicine. Anim. Reprod. Sci. 79: 291-317.
Niemann, H., D. Rath, and C. Wrenzycki. 2003. Advances in biotechnology: New tools in future pig production for agriculture and biomedicine. Reprod Domest Anim 38: 82-89.
Okabe, M., M. Ikawa, K. Kominami, T. Nakanishi, and Y. Nishimune. 1997. Green mice as a source of ubiquitous green cells. FEBS Lett. 407:313-319.
Okada, K., V. Krylov, R. Kren, and J. F. Jr. 2006. Development of pig embryos after electro-activation and in vitro fertilization in PZM-3 or PZM supplemented with fetal bovine serum. J. Reprod. Dev. 52:91-98.
Patsoula, E., D. Loutradis, P. Drakakis, K. Kallinaidis, R. Bletsa, and S. Michalas. 2001 Expression of mRNA for the LH and FSH receptors in mouse oocytes and preimplantation embryos. Reproduction 121;455-461.
Petersen T. E., A. M. Petrounkina, and M. E. Hundrieser. 2000. Oocyte-sperm interation. Anim. Reprod. Sci. 60-61:653-662.
Petter, R. M., and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73.
Prather, R. S., R. J. Hawley, D. B. Carter, L. Lai, and J. L. Greenstein. 2003. Transgenic swine for biomedicine and agriculture. Theriogenology 59: 115-123.
Richard, F. J., M. A. Foriter, and M. Sirard. 1997. Role of cyclic adenosine monophosphate-dependent protein kinase in the control meiotic resumption in bovine oocytes cultured with thecal cell monolayers. Biol. Reprod. 56:1363-1369.
Richard, F. J. and M. Sirard. 1998. Theca cell monolayers that inhibit maturation of bovine oocytes show differences in their protein secretion patterm. Mol. Reprod. Dev. 50:200-206.
Romar, R., P. Coy, I. Campos, J. Gadea, C. Matas, and S. Ruiz. 2001. Effect of co-culture of porcine sperm and oocyte with porcine oviductal epithelial cells on in vitro fertilization. Anim. Reprod. Sci. 68:85-98.
Schwartz, J. L. and H. P. George. 2003. Development and use of fluorescent protein markers in living cells. Science 300:87-91.
Seidel, G. E. Jr., 1993. Resource requirements for transgenic livestock research. J. Anim. Sci. 71:26-33.
Sebon, S., Y. Mirao, and T. Miyano. 2003. Interactions between the oocyte and surrounding somatic cells in follicular development:lesion from in vitro culture. J. Reprod. Dev. 49:259-269.
Shimomura, O. 1995. A short story of aequorin. Biol. Bull. 189: 1-5.
Stoye, J. P., P. Le Tissier, Y. Takeuchi, C. Patience, and R. A. Weiss. 1998. Endogenous retroviruses: A potential problem for xenotransplantation? Ann. N Y Acad. Sc. 862: 67-74.
Suarez, S. S. 1999. Regulation of sperm transport in mammalian oviduct. In: Gabno, C. (ED.), Spermatology. Cache Review Progress, Vienna, in press.
Sun, Q. Y. et al. 2001. Dynamic events are differently mediated by microfilaments, microtubules, and mitogen-activated protein kinase during porcine oocyte maturation and fertilization in vitro. Biol. Reprod. 64: 879-889.
Sun, Q. Y., and T. Nagai. 2003. Molecular mechanisms underlying pig oocyte maturation and fertilization. J. Reprod. Dev. 49: 347-359.
Sutovsky, P., J. E. Flechon, B. Flechon, J. Motlik, N. Peynot, P. Chesne, and Y. Heyman. 1993. Dynamic changes of gap junctions and cytoskeleton during in vito culture of cattle oocyte cumlus complexes. Biol. Reprod. 49:1277-1287.
Tanghe, S., A. V. Soom, H. Nauwynck, M. Coryn, and A. D. Kruif. 2001. Progesterone alone is not sufficient to mimic the benefical effect of a cumulus monolayer on the penetration rates of cumulus-free oocytes. Theriogenology 40:949-958.
Tanghe, S., A. V. Soom, H. Nauwynck, M. Coryn, and A. D. Kruif. 2002. Minireview: Functions of the cumulus oophorus during oocyte maturation, ovulation, and fertilization. Mol. Reprod. Dev. 61:414-424.
Teerds, K. J., and J. H. Dorrington. 1995. Immunolocalization of transforming growth facter α and luteinizing hormone receptor in healthy and atretic follicle of the adult rat ovary. Biol. Reprod. 52;500-508.
Telford, N. A., A. J. Watson, and G. A. Schulzz. 1990. Transition from maternal to embryonic control in early mammalian development: acomparision of several species. Mol. Reprod. Dev. 26:90-100.
Thibault, C., D. Szollosi, and M. Gerard. 1987. Mammalian oocyte maturation. Reprod. Nutr. Dev. 27:865-896.
Tsafriri, A. and C. P. Channing. 1975. An inhibitory influence of granulose cells and follicular fluid upon porcine oocyte meiosis in vitro. Endocrinology 96:922-927.
Vatzias, G.. and D. R. Hagen. 1999. Effects of porcine follicular fluid and oviduct-conditioned media on maturation and fertilization of porcine oocytes in vitro. Biol. Reprod. 60: 42-48.
Wall, R. J. and G. E. Seidel. 1992. Transgenic farm animals—A critical analysis. Theriogenology 38:337-357.
Wang, W. H., L. R. Abeydeera, R. S. Prather, and B. N. Day. 1998. Morphologic comparison of ovulated and in vitro matured porcine oocytes, with particular reference to polyspermy after in vitro fertilization. Mol. Reprod. Dev. 49: 308-316.
Wang W. H.,B.N. Day, and G. M. Wu. 2003. How does polyspermy happn in mammalian oocytes. Micro. Res. Tech.61:335-341.
Wheeler, M. B., and E. M. Walters. 2001. Transgenic technology and applications in swine. Theriogenology 56: 1345-1369.
Woychik, R. P. and K. Alagramam, 1998. Insertional mutagenesis in transgenic mice generated by the pronuclear microinjection procedure. Int. J. Dev. Biol. 42:1009-1017.
WTK Cheng , 1985. In vitro fertilization in farm animal oocytes. Ph.D. Thesis, Council of National Academic Awards, Cambridge (UK) (1985).
Waston, A. J., A. Hogan, A. Hahnel, K. E. Wiemer, and G. A. Schultz. 1992. Expression of growth factor ligand and receptor gene in the preimplantation bovine embryo. Mol. Reprod. Dev. 31:87-95.
Wu, B., G. G. Ignotz, W. B. Currie, and X. Yang. 1997. Dynamics of maturation-promoting factor and its application in reproductive biology. J. Reprod. Fert. 92:245-279.
Yanagimachi, R. 1981. Mechanisms of fertilization in mammals. In Fertilization and embryomic development in mammals. Mastroianni L. Jr. ,Biggers J. D. (ed) Fertilization and embryomic development in vitro, NEW YORK : Plenum Press. pp.81-182.
Zimmer, M. 2001. Green fluorescent protein (GFP):Applications structure and related photophysical behavior. Chem. Rev. 102:759-781.
Zuelke, K. A. and B. G. Brackett 1990. Luteinizing hormone-enhanced in vitro maturation of bovine oocytes with and without protein supplementation. Biol. Reprod. 43:784-787.
Zuelke, K. A. and B. G. Brackett 1992. Effect of luteinizing hormone on glucose metabolism in culture cumulus-enclosed bovine oocytes maturation in vitro. Endocrinology 131:2690-2696.
Zuelke, K. A. and B. G. Brackett 1993. Increased glutamine methabolism in bovine cumulus cell-enclosed and denuded oocytes after in vitro maturation with luteinizing hormone. Biol. Reprod. 48:815-820.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25800-
dc.description.abstract本研究旨在利用原核顯微操作技術,將由雞β-肌動蛋白啟動子攜帶綠色螢光蛋白質基因片段與巨細胞病毒促進子之轉基因,注入源自體內與體外受精所獲得之原核時期豬胚並經胚移置於受胚母豬。以期產製全身表現綠色螢光蛋白質之基因轉殖豬,做為生物醫學相關研究之動物平台。
為達此目的,本研究利用體外生產系統與外科手術取得原核時期的受精卵,供作基因顯微注射用。
源自屠宰場獲得發身前之母豬卵巢,選擇大小為3-6mm之濾泡,分離卵丘卵母複合體(cumulus-oocyte complexes, COCs)。並將取得卵丘卵母複合體依據包覆卵母細胞外圍之卵丘細胞層數分為具有兩層以上卵丘細胞(A組)與少於兩層以上卵丘細胞(B組)之兩組試驗組。經應用NCSU-23體外培養液,於 39℃、5%CO2及100%空氣與100%相對濕度等條件下,進行體外成熟作用44-46小時。培養終了平均分別可獲得83.28±1.56% 與69.98±6.66%之成熟卵母細胞。進ㄧ歩將成熟卵母細胞與業經體外獲能處理4小時之精子共培養6至 8小時後,移至體外培養液中培養14~16小時,經位向差顯微鏡觀察受精率與原核形成比例,結果兩組平均受精率分別為68.83±5.5% 與67.18±6.41%;可發育形成雌雄原核之百分率分別為19.87±3.44% 與19.68±6.13%。由體外成熟、受精及受精卵於體外培養7日後,其卵裂率分別為57.36±9.76 %與47.62±4.02 %,而其可發育至囊胚期豬胚之百分率則為9.04±2.82%與3.95±3.87%。至於豬胚外源性基因之顯微注射係受精後16至18小時予以進行,並經體外培養7日後,以螢光顯微鏡觀察豬胚表現綠色螢光情形。總計完成66個豬胚顯微操作,培養終了計有19顆豬胚表現綠色螢光。透過實驗證實,源自體外成熟、受精、培養及顯微注射外源基因之豬胚,能在體外順利發育並表現綠色螢光。因此進一步試驗,將源自體外成熟、受精、培養及顯微注射外源基因之豬胚,經胚移置於受胚豬兩側輸卵管中,觀其在體內發育的潛能,總計47 顆豬胚經胚移置於四頭受胚母豬。
利用源自供胚母豬經外科手術收集之豬胚所進行之產製螢光豬試驗,總計收集265 顆處於原核時期之豬胚,業經基因顯微注射後,移置八頭受胚母豬之兩側輸卵管中。經懷孕期滿,共36頭仔豬順利分娩,而其中有三頭仔豬其基因組DNA經聚合酶鏈鎖反應(PCR)與南方吸漬法(Southern blot)分析後,證實三隻均帶有外源性轉殖基因。並於藍光激發下,其全身性發射出綠色螢光。
綜合上述,可知源自半徑大小為3-6mm濾泡之卵丘卵母複合體經體外成熟、受精作用後所獲得之豬胚,可順利發育至囊胚時期。經此過程所獲得之原核期豬胚經顯微操作後,可順利表現綠色螢光蛋白質。可以預見,未來透過體外培養技術,將可獲得大量可供作基因轉殖之豬胚,降低產製基因轉殖豬之成本。而透過上述試驗所獲得之綠色螢光基因轉殖豬將有助於協助建立再生醫學之大型動物模式之研究。
zh_TW
dc.description.abstractThe aims of this study were to produce porcine embryo in vitro and transfer pCX-EGFP transgene which includes EGFP cDNA under the regulation of a chicken beta-actin promoter and cytomegalovirus enhancer into in vitro and in vivo produced porcine embryos by pronuclear microinjection.
For generation of transgenic pigs, the experiments used the pronuclear embryos derived from in vitro and in vivo production. Ovaries were collected from prepuberty gilts at a local abattoir and cumulus-oocyte complexes (COCs) were isolated from 3-6mm in diameter antral follicles. The COCs were discriminated two groups by oocytes with more (A group) or less than two layers (B group) cumulus cell. COCs were cultured with NCSU-23 medium of in vitro maturation (IVM) for 44-46 hr. After IVM, the oocytes were co-culture with spermatozoa of capacitated treatment for 6-8 hr, then the oocytes were transferred to NCSU-23 medium supplemented with 0.4% bovine serum albumin for further culture 14 to 20 hr. The results indicated that the percentage of oocytes resume meiosis to metaphase II were 83.28±1.56% v.s 69.98±6.66%(P<0.05), respectively (P<0.05), average fertilization rate were 68.83±5.5% v.s 67.18±6.41%, and two-pronucleus formation rate were 19.87±3.44% v.s 19.68±6.13%.The result of in vitro culture showed that cleavage rate were 57.36±9.76 % v.s 47.62±4.02 %and the percentage of developing to blastocyst stage were 9.04±2.82%v.s 3.95±3.87%. At 16~18hr postinsemination, two-pronucleus embryos provided for pCX-EGFP transgene injection. A total of 66 injected embryos were performed and assessed the EGFP expression by fluorescence microscopy during in vitro culture. Eventually, nineteen out of them express EGFP gene. Furthermore,a total of 47 embryos transferred into oviducts of the four recipient sows which derived from IVP system and injected pCX-EGFP transgen In addition, for the experiment of producing transgenic pigs, totally 265 pronuclear porcine embryos were collected surgically from donor gilts, all of the pCX-EGFP transgene injected embryos were transferred into oviducts of the eight recipient sows. Three out of thirty-six farrowed piglets were confirmed to be as transgenics by PCR and Southern blot analysis. All of them ubiquitously express the EGFP under blue light exposure.
In conclusion, the COCs derived from 3-6 mm in diameter antral follicles have capacity to mature, fertilize and develop to blastocyst in vitro. In the foreseeable future, in vitro production of porcine embryo is possible to provide a large number of porcine embryos for gene transfer. EGFP transgenic pig is useful for establishing pig model of regenerative medicine.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:30:44Z (GMT). No. of bitstreams: 1
ntu-95-R93626011-1.pdf: 1338507 bytes, checksum: 184821a7467d979a1084bff0b70f819b (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目錄………………………………………………………… I
表次………………………………………………………… Ⅲ
圖次………………………………………………………… Ⅳ

摘要………………………………………………………… 1
緒言………………………………………………………… 3

壹、文獻檢討
ㄧ、卵母細胞之成熟作用……………………………………… 5
二、受精作用………………………………………………… 14
三、受精卵體外發育潛能……………………………………… 22
四、卵丘細胞對卵母細胞體外成熟與受精作用影響…………… 24
五、濾泡液對卵母細胞體外成熟與受精作用影響……………… 30
六、綠色螢光蛋白質之功能與特性…………………………… 30
七、產製基因轉殖豬方法與效率……………………………… 34
八、基因轉殖豬在生物醫學方面應用………………………… 35
貳、試驗ㄧ 體外成熟及受精之豬原核胚基因轉殖
一、前言……………………………………………………… 42
二、材料與方法……………………………………………… 42
三、結果與討論……………………………………………… 56

頁次
參、試驗二 體內成熟及受精之豬原核胚基因轉殖
一、前言……………………………………………………… 71
二、材料與方法……………………………………………… 71
三、結果與討論……………………………………………… 77
結論………………………………………………………… 82
參考文獻…………………………………………………… 83
英文摘要…………………………………………………… 90
作者小傳………………………………………………… 92
dc.language.isozh-TW
dc.title攜帶雞β-actin /綠色螢光蛋白轉基因豬之產製與分析zh_TW
dc.titleGeneration and Analysis of Transgenic Pigs Harboring the EGFP Gene Driven by Chicken β-action Promoteren
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭登貴(Winston T.K. Cheng),黃木秋(Mu-Chiou Huang),陳全木(Chuan-Mu Chen),陳銘正(Ming-Cheng Chen)
dc.subject.keyword豬胚,綠色螢光蛋白質,體外生產系統,zh_TW
dc.subject.keywordporcine embryo,EGFP,in vitro production system,en
dc.relation.page92
dc.rights.note未授權
dc.date.accepted2006-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved