請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25786
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭登貴(Teng-Kuei Cheng) | |
dc.contributor.author | Chung-Wei Liu | en |
dc.contributor.author | 劉重威 | zh_TW |
dc.date.accessioned | 2021-06-08T06:30:00Z | - |
dc.date.copyright | 2006-07-28 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-25 | |
dc.identifier.citation | 黃瑞如。2003。豬心臟型脂肪酸結合蛋白基因多態性與肌肉內脂肪含量之關係。屏東科技大學生物科技研究所碩士論文。
Al Dahouk, S., H. Tomaso, E. Prenger-Berninghoff, W. D. Splettstoesser, H. C. Scholz, and H. Neubauer. 2005.Identification of brucella species and biotypes using polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP). Crit. Rev. Microbiol. 31(4): 191-196 Allen, D. J., A. Makhov, M. Grilley, J. Taylor, R. Thresher, P. Modrich, and J. D. Griffith. 1997. MutS mediates heteroduplex loop formation by a translocation mechanism. EMBO J. 16: 4467-4476. Ban, C., and W. Yang. 1998. Structural basis for muth activation in E.coli mismatch repair and relationship of muth to restriction endonucleases. EMBO J. 17: 1526-1534. Banaszak, L., L. Banaszak, N. Winter, Z. Xu, D. A. Bernlohr, S. Cowan, and T. A. Jones. 1994. Lipid-binding proteins: A family of fatty acid and retinoid transport proteins. Adv. Protein Chem. 45: 89-151. Behrensdorf, H. A., M. Pignot, N. Windhab, and A. Kappel. 2000. Rapid parallel mutation scanning of gene fragments using a microelectronic protein-DNA chip format. Nucl. Acids Res. 30: E64. Bi, L. J., Y. F. Zhou, X. E. Zhang, J. Y. Deng, Z. P. Zhang, B. Xie, and C. G. Zhang. 2003. A MutS-based protein chip for detection of DNA mutations. Anal. Chem. 75: 4113-4119. Binas, B., H. Danneberg, J. McWhir, L. Mullins, and A. J. Clark. 1999. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 13: 805-812. Biswas, I., and P. Hsieh. 1997. Interaction of muts protein with the major and minor grooves of a heteroduplex DNA. J. Biol. Chem. 272: 13355-13364. BjψBjørheim, J., G.. Gaudernack, and P. O. Ekstrøm. 2002. Melting gel techniques in single nucleotide polymorphism and mutation detection: from theory to automation. J. Sep. Sci. 25: 637-647. Bohmer, F. D., R. Kraft, A. Otto, C. Wernstedt, U. Hellman, A. Kurtz, T. Muller, K. Rohde, G. Etzold, and W. Lehmann. 1987. Identification of a polypeptide growth inhibitor from bovine mammary gland. Sequence homology to fatty acid- and retinoid-binding proteins. J. Biol. Chem. 262: 15137-15143. Brookes, A. J. 1999. The essence of SNPs. Gene. 234: 177-186. Brown, J., T. Brown, and K. R. Fox. 2001. Affinity of mismatch-binding protein mutsfor heteroduplexes containing different mismatches. Biochem. J. 354: 627-633. Burton, P. B., P. B. Burton, C. E. Hogben, C. L. Joannou, A. G. Clark, J. J. Hsuan, N. F. Totty, C. Sorensen, R. W. Evans, and M. J. Tynan. 1994. Heart fatty acid binding protein is a novel regulator of cardiac myocyte hypertrophy. Biochem. Biophys. Res. Commun. 205: 1822-1828. Chen, S., S. H. Bigner, and P. Modrich. 2001. High rate of cad gene amplification in human cells deficient in mlh1 or msh6. Proc. Natl. Acad. Sci. U. S. A. 98: 13802-13807. Collins, F. S., L. D. Brooks, and A. Chakravarti. 1998. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res. 8: 1229-1231. Colussi, C., E. Parlanti, P. Degan, G. Aquilina, D. Barnes, P. Macpherson, P. Karran, M. Crescenzi, E. Dogliotti, and M. Bignami. 2002. The mammalian mismatch repair pathway removes DNA 8-oxodgmp incorporated from the oxidized dntp pool. Curr. Biol. 12: 912-918. Cotton, R. G., and P. J. Bray. 2001. Using CCM and DHPLC to detect mutations in the glucocorticoid receptor in atherosclerosis: a comparison. J. Biochem. Biophys. Methods. 47: 91-100. Cottom, R. G. 1993. Current methods of mutation detection. Mutat. Res. 285(1): 125-44. de Wind, N., M. Dekker, A. Berns, M. Radman, and H. te Riele. 1995. Inactivation of the mouse msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82: 321-330. Dzantiev, L., N. Constantin, J. Genschel, R. R. Iyer, P. M. J. Burgers, and P. Modrich. 2004. A defined human system that supports bidirectional mismatch-provoked excision. Mol. Cell 15: 31–41. Kleymenova, E., S. Muga, S. Fischer, and C. L. Walker. 2000. Application of high-performance liquid chromatography-based analysis of DNA fragments to molecular carcinogenesis. Mol. Carcinog. 29(2): 51 - 58. Ellis, L. A., G. R. Taylor, R. Banks, and S. Baumberg. 1994. MutS binding protects heteroduplex DNA from exonuclease digestoin in vitro: a simple method for detecting mutations. Nucl. Acids Res. 22:2710-2711. Emnett, R., S. Moeller, K, Irvin, M. Rothscholid, G. Plastow, and R.Goodwin. 2000. An introduction into the genetic controls of pork quality. 2000 NISF Proccedings. Fedier, A., and D. Fink. 2004. Mutations in DNA mismatch repair genes: Implications for DNA damage signaling and drug sensitivity (review). Int. J. Oncol. 24: 1039-1047. Fishel, R., and T. Wilson. 1997. MutS homologs in mammalian cells. Curr. Opin. Genet. Dev. 7: 105-113. Fishel, R., and R. D. Kolodner. 1995. Identification of mismatch repair genes and their role in the development of cancer. Curr. Opin. Genet. Dev. 5: 382-395. Fishel, R. 2001. The selection for mismatch repair defects in hereditary nonpolyposis colorectal cancer: Revising the mutator hypothesis. Cancer Res. 61: 7369-7374. Genschel, J., L. R. Bazemore, and P. Modrich. 2002. Human exonuclease I is required for 5¢- and 3¢ mismatch repair. J. Biol. Chem. 277: 13302–13311. Genschel, J., S. J. Littman, J. T. Drummond, and P. Modrich. 1998. Isolation of MutSb from human cells and comparison of the mismatch repair specificities of MutSb and MutSa. J. Biol. Chem. 273: 19895–19901. Gerbens, F., M. A. Groenen, J. H. Veerkamp, J. A. Van Arendonk, and M. F. te Pas. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in meishan crossbred pigs. J. Anim. Sci. 78: 552-559. Gerbens, F., A. J. van Erp, F. L. Harders, F. J. Verburg, T. H. Meuwissen, J. H. Veerkamp, and M. F. te Pas. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77: 846-852. Gerbens, F., A. Jansen, A. J. M. van Erp, F. Harders, and T. H. E. Meuwissen. 1998. The adipocyte fatty acid-binding protein locus: characterization and association with intramuscular fat content in pigs. Mamm. Genome 9. 1022-1026. Gerbens, F., G. Rettenberger, J. A. Lenstra, J. H. Veerkamp, and M. F. Pas. 1997. Characterization, chromosomal localization, and genetic variation of the porcine heart fatty acid-binding protein gene. Mamm. Genome 8: 328-332. Glatz, J. F., G. J. van der Vusse, M. L. Simoons, J. A. Kragten, M. P. van Dieijen-Visser, and W. T. Hermens. 1998. Fatty acid-binding protein and the early detection of acute myocardial infarction. Clin. Chim. Acta. 272: 87-92. Glatz, J. F., and G. J. van der Vusse. 1996. Cellular fatty acid-binding proteins: Their function and physiological significance. Prog. Lipid Res. 35: 243-282. Glatz, J. F., and G. J. van der Vusse. 1990. Nomenclature of fatty acid-binding proteins. Mol. Cell Biochem. 98: 231-235. Gordon, J. I., N. Elshourbagy, J. B. Lowe, W. S. Liao, D. H. Alpers, and J. M. Taylor. 1985. Tissue specific expression and developmental regulation of two genes coding for rat fatty acid binding proteins. J. Biol. Chem. 260(4):1995-1998. Gotoh, M., M. Hasebe, T. Ohira, Y. Hasegawa, Y. Shinohara, H. Sota, J. Nakao, and M. Tosu. 1997. Rapid method for detection of point mutation using mismatch binding protein (MutS) and a optical biosensor. Genet. Anal. 14: 47-50. Gu, L., Y. Hong, S. McCulloch, H.Watanabe, and G. M. Li. 1998. ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucl. Acids Res. 26: 1173–1178. Guarne, A., M. S. Junop, and W. Yang. 2001. Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. EMBO J. 20: 5521–5531. Harfe, B.D., B. K. Minesinger, and S. Jinks-Robertson. 2000. Discrete in vivo roles for the MutL homologs Mlh2p and Mlh3p in the removal of frameshift intermediates in budding yeast. Curr. Biol. 10: 145–148. Heller, M. J. 2002. DNA microarray technology: devices, systems, and applications. Annu. Rev. Biomed. Eng. 4: 129-153. Heuckeroth, R. O., E. H. Birkenmeier, M. S. Levin, and J. I. Gordon. 1987. Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J. Biol. Chem. 262: 9709-9717. Holmes, J., S. Clark, and P. Modrich. 1990. Strand-specific mismatch correction in nuclear extracts of human and Drosophila melanogaster cell lines. Proc. Natl. Acad. Sci. U. S. A. 87: 5837–5841. Hovenier, R., E. W. Brascamp, E. Kanis, J. H. van der Werf, and A. P. Wassenberg. 1993. Economic values of optimum traits: The example of meat quality in pigs. J. Anim. Sci. 71: 1429-1433. Huang, K. N., and L. S. Symington. 1993. A 5'-3' exonuclease from Saccharomyces cerevisiae is required for in vitro recombination between linear DNA molecules with overlapping homology. Mol. Cell Biol. 13: 3125–3134. Iams, K., E. D. Larson, and J. T. Drummond. 2002. DNA template requirements for human mismatch repair in vitro. J. Biol. Chem. 277: 30805–30814. Jain, K. K. 2002. Applications of biochip and microarray systems in pharmacogenomics. Pharmacogenomics. 1(3): 289-307. Jiricny, J., S. S. Su, S. G. Wood, and P. Modrich. 1988. Mismatch-containing oligonucleotide duplexes bound by the E. coli muts-encoded protein. Nucl. Acids Res. 16: 7843-7853. Jones, M., R. Wagner, and M. Radman. 1987. Repair of a mismatch is influenced by the base composition of the surrounding nucleotide sequence. Genetics 115: 605-610. Khan, J., R. Simon, M. Bittner, Y. Chen, S. B. Leighton, T. Pohida, P. D. Smith, Y. Jiang, G. C. Gooden, J. M. Trent, and P. S. Meltzer. 1998.Gene expression profiling of alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res. 58(22): 5009-5013. Kolodner, R. D. 1996. Biochemistry and genetics of eukaryotic mismatch repair. Genes Dev. 10: 1433–1442. Kramer, W., B. Kramer, M. S. Williamson, and S. Fogel. 1989. Cloning and nucleotide equence of DNA mismatch repair gene PMS1 from Saccharomyces cerevisiae: homology of PMS1 to procaryotic MutL and HexB. J. Bacteriol. 171: 5339–5346. Kunkel, T. A., and D. A. Erie. 2005. DNA mismatch repair. Annu. Rev. Biochem. 74: 681-710. Kwok, P. Y. 2001. Methods for genotyping single nucleotide polymorphisms. Annu. Rev. Genomics Hum. Genet. 2:235-258. Kwok, P. Y. 2000. High-throughput genotyping assay approaches. Pharmacogenomics. 1:95-100. Kwok, P. Y., and Chen, X. 1998. Detection of single nucleotide polymorphism. Curr Issues Mol Biol. 2003 Apr;5(2):43-60. Lin, Y. L., M. K. K. Shivji, C. Chen, R. Kolodner, R. D. Wood, and A. Dutta. 1998. The evolutionarily conserved zinc finger motif in the largest subunit of human replication protein A is required for DNA replication and mismatch repair but not for nucleotide excision repair. J. Biol. Chem. 273: 1453–1461. Lishanski, A., E. A. Ostrander, and J. Rine. 1994. Mutation detection by mismatch binding protein, muts, in amplified DNA: Application to the cystic fibrosis gene. Proc. Natl. Acad. Sci. U. S. A. 91: 2674-2678. Lipshutz, R. J., D. Morris, and M. Chee, E. Hubbell, M. J. Kozal, N. Shah, N. Shen, R. Yang, and S. P. Fodor.1995. Using oligonucleotide probe arrays to access genetic diversity. Biotechniques. 19(3):442-447. Lopez de Saro, F. J., and M. O'Donnell. 2001. Interaction of the beta sliding clamp with muts, ligase, and DNA polymerase. Proc. Natl. Acad. Sci. U. S. A. 98: 8376-8380. Loeb, L. A., K. R. Loeb, and J. P. Anderson. 2003. Multiple mutations and cancer. Proc. Natl. Acad. Sci. U S A.100(3):776-81. Epub 2003 Jan 27. Malkov, V. A., I. Biswas, R. D. Camerini-Otero, and P. Hsieh. 1997. Photocross-linking of the nh2-terminal region of taq muts protein to the major groove of a heteroduplex DNA. J. Biol. Chem. 272: 23811-23817. Marsischky, G. T., N. Filosi, M. F. Kane, and R. Kolodner. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10: 407–420. Marti, T. M., C. Kunz, and O. Fleck. 2002. DNA mismatch repair and mutation avoidance pathways. J. Cell Physiol. 191: 28-41. Miterski, B., R. Krüger, P. Wintermeyer, and J. T. Epplen. 2000. PCR/SSCP detects reliably and efficiently DNA sequence variations in large scale screening projects. Comb. Chem. High Throughput Screen. 3: 211-218. Moch, H., P. Schraml, L. Bubendorf, M. Mirlacher, J. Kononen, T. Gasser, M. J. Mihatsch, O. P. Kallioniemi, and G. Sauter. 1999. Identification of prognostic parameters for renal cell carcinoma by cDNA arrays and cell chips Verh. Dtsch. Ges. Pathol. 83: 225-32. Modrich, P., and R. Lahue. 1996. Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu. Rev. Biochem. 65: 101-133. Muyzer, G., and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology. Antonie Van Leeuwenhoek. 73:127-141. Myers, R. M., S. G. Fischer, L. S. Lerman, and T. Maniatis. 1985. Nearly all single base substitutions in DNA fragments joined to a GC-clamp can detected by denaturing gradient gel electrophoresis. Nucl. Acids Res. 13:3131-3145. Nakahara, T., Q. M. Zhang, K. Hashiguchi, and S. Yonei. 2000. Identification of proteins of Escherichia coli and Saccharmoyces cerevisiae that specifically bind to C/C mismatches in DNA. Nucl. Acids Res. 28: 2551-2556. Orita, M., H. Iwahana, H. Kanazawa, K. Hayashi, and T. Sekiya. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand confomation polymorphism. Proc. Natl. Adad. Sci. U. S. A. 86: 2766-2770. Potter, B. J., D. Sorrentino, and P. D. Berk. 1989. Mechanisms of cellular uptake of free fatty acids. Annu. Rev. Nutr. 9: 253-270. Prasons, B. L., and R. H. Heflich. 1998. Detection of basepair substitution mutation at a frequency of 1x 10(-7) by combining. two genotypic selection methods, MutEx enrichment and allele-specific competitive blocker PCR. Environ. Mol. Mutagen 32: 200-211. Prasons, B. L., and R. H. Heflich. 1997. Evalution of MutS as a tool for diect measurement of point mutations in genomic DNA. Mutat. Res. 374: 277-285. Prolla, T., D. M. Christie, and R. M. Liskay. 1994. Dual requirement in yeast DNA ismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol. Cell Biol. 14: 407–415. Ramilo, C., L. Gu, S. Guo, X. Zhang, S. M. Patrick, J. J. Turchi, and G. M. Li. 2002. Partial reconstitution of human DNA mismatch repair in vitro: characterization of the role of human replication protein A. Mol. Cell Biol. 22: 2037–2046. Reenan, R. A. G., and R. D. Kolodner. 1992. Characterization of insertion mutations in the Saccharomyces cerevisiae MSH1 and MSH2 genes: evidence for separate mitochondrial and nuclear functions. Genetics 132: 975–985. Ross-Macdonald, P., and G. S. Roeder. 1994. Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction. Cell 79:1069–1080. Russo, M. T. M. F. Blasi, F. Chiera, P. Fortini, P. Degan, P. Macpherson, M. Furuichi, Y. Nakabeppu, P. Karran, G. Aquilina, and M. Bignami. 2004. The oxidized deoxynucleoside triphosphate pool is a significant contributor to genetic instability in mismatch repair-deficient cells. Mol. Cell Biol. 24: 465-474. Sachadyn, P., A. Stanislawska, and J. Kur. 2000. One tube mutatoin detection detection using sensitive fluorescent dyeing of MutS protected DNA. Nucl. Acids Res. 28:E36. Schaap, F. G., B. Binas, H. Danneberg, G. J. van der Vusse, and J. F. Glatz. 1999. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ. Res. 85: 329-337. Service, R. F. 1998. Microchip arrays put DNA on the spot. Science. 282: 396-399. Shastry, B. S. 2002. SNP alleles in human disease and evolution. J. Hum. Genet. 47: 561-566. Sheffield, V. C., J. S. Beck, E. M. Stone, and R. M. Myers. 1992. A simple and efficent method for attachment of a 40-base pair, GC-rich sequence to PCR-amplified DNA. Bio. Techniques. 12: 386-387. Shields, H. M., M. L. Bates, N. M. Bass C. J., Best, D. H. Alpers, and R. K. Ockner. 1986. Light microscopic immunocytochemical localization of hepatic and intestinal types of fatty acid-binding proteins in rat small intestine. J. Lipid Res. 27: 549-557. Sorrentino, D., D. Stump, B. J. Potter, R. B. Robinson, R. White, C. L. Kiang, and P. D. Berk. 1988. Oleate uptake by cardiac myocytes is carrier mediated and involves a 40-kd plasma membrane fatty acid binding protein similar to that in liver, adipose tissue, and gut. J. Clin. Invest. 82: 928-935. Specht, B., N. Bartetzko, C. Hohoff, H. Kuhl, R. Franke, T. Borchers, and F. Spener. 1996. Mammary derived growth inhibitor is not a distinct protein but a mix of heart-type and adipocyte-type fatty acid-binding protein. J. Biol. Chem. 271: 19943-19949. Stanislawska-Sachadyn, A., Z. Paszko, A. Kluska, E. Skasko, M. Sromek, A. Balabas, A. Janiec-Jankowska, A. Wisniewska, J. Kur, and P. Sachadyn. 2005. Preliminary studies on DNA retardation by muts applied to the detection of point mutations in clinical samples. Mutat. Res. 570: 97-103. Stanislawska-Sachadyn, A. and P. Sachadyn. 2004. MutS as a tool for mutation detection. Acta. Biochim. Pol. 52(3):575-583. Stanislawska-Sachadyn, A., P. Sachadyn, R. Jedrzejczak, and J. Kur. 2003. Construction and purification of his6-Thermus thermophilus muts protein. Protein Expr. Purif. 28: 69-77. Stremmel, W., G. Strohmeyer, F. Borchard, S. Kochwa, and P. D. Berk. 1985. Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc. Natl. Acad. Sci. U. S. A. 82: 4-8. Su, S. S., and P. Modrich. 1986. Escherichia coli muts-encoded protein binds to mismatched DNA base pairs. Proc. Natl. Acad. Sci. U. S. A. 83: 5057-5061. Sun, H. B., and H. Yokota. 2000. Muts-mediated detection of DNA mismatches using atomic force microscopy. Anal. Chem. 72: 3138-3141. Tachiki, H., R. Kato, and S. Kuramitsu. 2000. DNA binding and protein-protein interaction sites in muts, a mismatched DNA recognition protein from thermus thermophilus hb8. J. Biol. Chem. 275: 40703-40709. Tachiki, H., R. Kato, R. Masui, K. Hasegawa, H. Itakura, K. Fukuyama, and S. Kuramitsu. 1998. Domain organization and functional analysis of thermus thermophilus muts protein. Nucleic. Acids Res. 26: 4153-4159. Takamatsu, S., R. Kato, and S. Kuramitsu. 1996. Mismatch DNA recognition protein from an extremely thermophilic bacterium, thermus thermophilus hb8. Nucl. Acids Res. 24: 640-647. Tang, M. K., P. M. Kindler, D. Q. Cai, P. H. Chow, M. Li, and K. K. Lee. 2004. Heart-type fatty acid binding proteins are upregulated during terminal differentiation of mouse cardiomyocytes, as revealed by proteomic analysis. Cell Tissue Res. 316: 339-347. Tran, H. T., D. A. Gordenin, and M. A. Resnick. 1999. The 3'-5' exonucleases of DNA polymerases d and e and the 5'-3' exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol. Cell Biol. 19: 2000–2007. Tran, P. T., J. A. Simon, and R. M. Liskay. 2001. Interactions of Exo1p with components of MutLa in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 98: 9760–9765. Treuner, M., C. A. Kozak, D. Gallahan, R. Grosse, and T. Muller. 1994. Cloning and characterization of the mouse gene encoding mammary-derived growth inhibitor/heart-fatty acid-binding protein. Gene 147: 237-242. Umar, A., C. R. Boland, J. P. Terdiman, S. Syngal, A. Chapelle, J. Ruschoff, R. Fishel, N. M. Lindor, L. J. Burgart, R. Hamelin, S. R. Hamilton, R. A. Hiatt, J. Jass, A. Lindblom, H. T. Lynch, P. Peltomaki, S. D. Ramsey, M. A. Rodriguez-Bigas, H. F. Vasen, E. T. Hawk, J. C. Barrett, A. N. Freedman, S. Srivastava. 2004. Revised bethesda guidelines for hereditary nonpolyposis colorectal cancer (lynch syndrome) and microsatellite instability. J. Natl. Cancer Inst. 96: 261-268 Umar, A., J. I. Risinger, W. E. Glaab, K. R. Tindall, J. C. Barrett, and T. A. Kunkel. 1998. Functional overlap in mismatch repair by human MSH3 and MSH6. Genetics 148: 1637–1646. Urakawa, H., S. E. Fantroussi, H. Smidt, J. C. Smoot, E. H. Tribou, J. J. Kelly, P. A. Noble, and D. A. Stahl. 2003. Optimization of single-base-pair mismatch discrimination in oligonucleotide microarrays. Appl. Environ. Microbiol. 69: 2848-2856. Veerkamp, J. H., and R. G. Maatman. 1995. Cytoplasmic fatty acid-binding proteins: Their structure and genes. Prog. Lipid Res. 34: 17-52. Whitehouse, A., J. Deeble, R. Parmar, G. R. Taylor, A. F. Markham, and D. M. Meredith, 1997. Analysis of the mismatch and insertion/deletion binding properties of thermus thermophilus, hb8, muts. Biochem. Biophys. Res. Commun. 233: 834-837. Yamamoto, A., M. J. Schofield, I. Biswas, and P. Hsieh. 2000. Requirement for phe36 for DNA binding and mismatch repair by escherichia coli muts protein. Nucl. Acids Res. 28: 3564-3569. Young, L. C., J. B. Hays, V. A. Tron, and S. E. Andrew. 2003. DNA mismatch repair proteins: Potential guardians against genomic instability and tumorigenesis induced by ultraviolet photoproducts. J. Invest. Dermatol. 121: 435-440. Wang, T. F., N. Kleckner, and N. Hunter. 1999. Functional specificity of MutL homologs in yeast: Evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc. Natl. Acad. Sci. U. S. A. 96: 13914–13919. Wanger, R., P. Debbie, and M. Radman. 1995. Mutation detection using immobilized mismatch binding protein (MutS). Nucl. Acids Res. 23:3944-3948. Wagner, R., and A. Dean. 2000. The use of immobilized mismatch binding protein in mutation/SNP detection. Methods Mol. Biol. 152:159-68. Xiao, W., and P. J. Oefner.2001.Denaturing high-performance liquid chromatography: a review. Hum. Genet. 17: 439-474. Zheng, D., E. W. Alm, D. A. Stahl, and L. Raskin. 1996. Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl. Environ. Microbiol. 62: 4504-4513. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25786 | - |
dc.description.abstract | 本研究旨在針對豬隻心臟型脂肪酸結合蛋白(heart fatty acid-binding protein, H-FABP)基因呈現有單一核甘多態性(single
nucleotide polymorphisms, SNPs)之特定序列,嘗試開發使之成為高效 率篩選具備高肉質遺傳性狀種豬之使用。 為謀確認豬隻H-FABP基因之SNPs。試驗首先從已知表現有高肉 質性狀之種豬,針對其H-FABP基因多態性片段建立標準序列核酸選 殖株,並設定擴增及標定標的基因之多重聚合酶鏈鎖反應系統反應條 件。寡聚核苷探針係根據SNPs序列設計並固定於固相支撐物上如: 聚己二醯己二胺膜(nylon membrane)上;將PCR擴增子(PCR amplicons) 與探針雜合於晶片上,進行訊號定量及標準化。 初步試驗結果首先確定成功建構高專一性之H-FABP寡聚核苷引 子並完成單一及多重PCR理想反應條件;藉由20個未知樣品證實每組 特異性引子擴增H-FABP基因之SNPs序列時,各自具備高度敏感性與 高度特異性;此外為達成多重鑑定SNPs之目的乃進一步設計3組引子 已嘗試同步擴增不同基因型,經40頭豬基因組樣品試驗結果,擴增成 功率達95%,且所得DNA片段各具備其SNPs基因型。 進一步研究則致力於改善以MutS為基礎之蛋白質-核酸混合晶 片技術平台建構並測試為此所產生之微陣列檢測系統的靈活性;準確 性及其實際應用效果執行能力。試驗首先自E. coli基因選殖配對錯誤 結合蛋白MutS核酸序列並將之嵌入PinPoint蛋白質表現系統利於大 量表現並純化該MutS融合蛋白。所獲得之MutS融合蛋白功能,經使 用六種已知基因型態之H-FABP標準選殖株(AA, aa, DD, dd, HH及 hh 等),藉由硝化纖維膜上點佈吸漬與前述純化之MutS蛋白進行雜合分 析。試驗結果顯示,由H-FABP基因多態性標準選殖株混和製備之異 源雙股在理想條件下能夠成功的被MutS重組蛋白所辨識。 | zh_TW |
dc.description.abstract | In this present study, attempts were made to develop an array analysis system for simultaneous genotyping of several single nucleotide polymorphisms (SNPs) located in porcine H-FABP gene and hopefully, an available high throughput screening strategy can be successfully created for selecting the breeding pigs characterized with high performance in meat quality.
To meet this purpose, initial studies were first conducted to identify those SNPs found in porcine H-FABP gene. In these initial studies, different genotypes of H-FABP polymorphism fragments from known breeding pigs with elite meat quality were served as standard clones and the oligonucleotide array technology was subjected to setup a multiplexed PCR system suitable for amplification and labeling of the target genes. Oligonucleotide probes were designed according SNPs sequence and were then immobilized on a solid support like nylon membrane. After hybridization of PCR amplicons to probes on a chip, signals were quantified and normalized. From these studies, several results have been obtained, including that of: 1. appropriate probes of oligonucleotides have been successfully designed, according SNPs sequence of H-FABP gene; 2. optimal conditions for both of the single and the multiplexed PCR system have all been successfully verified when a total of 20 unknown samples were subjected for PCR amplification test; 3. experimental results confirmed that each of the specific primer-sets owing characteristics of high sensitivity and high specificity for amplifying and labeling those SNPs sequence against to the H-FABP gene and these are particularly true when multiplexed PCR system were conducted by the combination of 3 or even 4 primer-sets to meet the purpose of multiple identification of SNPs against to each different genotypes at the same time ; and 4. among a total of 40 individual genomic samples tested, over 95 % of them were successfully amplified and each of the DNA fragments obtained were characterized with their specific genotype(s) of SNPs. The subsequent studies were conducted to improve the flexibility, accuracy and executive ability of microarray-based detection system by the use of MutS-based protein-nucleic acid hybrid array technique. Briefly, the mismatch repair binding protein MutS was cloned from E. coli genome and was inserted into PinPoint protein expression system. The fusion protein was expressed and purified. Thereby, the binding efficiency of MutS fusion protein would be easily tested when comparisons were made to those of the H-FABP standard clones. To exam the function of recombinant MutS protein, six types of H-FABP standard clones were mixed with the protein (AA/aa, DD/dd, HH/hh). Those cDNA clones were spotted on nitrocellulose membranes and then hybridize with purified MutS protein. The resulting images will then be available of serving as a quality and quantity control for field studies. Results from these later studies have so far confirmed that three kinds of heteroduplex DNA of H-FABP gene polymorphic standard clones could be discriminated successfully by the recombinant protein MutS when optimal concentrations of heteroduplex DNA and MutS protein had been applied. Further studies conducted to verifying feasibility of these preparations in large scale of field applications are now in progression. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:30:00Z (GMT). No. of bitstreams: 1 ntu-95-R93626017-1.pdf: 996022 bytes, checksum: af08ba1ca29791e51bc05d56f5c6533f (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 目 錄
頁 次 目錄……………………………………………………………... I 表次……………………………………………………………... II 圖次……………………………………………………………... III 中文摘要………………………………………………………... 1 前言……………………………………………………………... 2 壹、文獻檢討 一、基因晶片簡介....................................................................... 3 二、H-FABP基因與豬隻肉質之關係…………………….…… 5 三、檢測基因多態性的方法學................................................... 10 四、應用MutS蛋白質篩檢基因多態性………………………. 13 貳、材料與方法 一、基因之構築………………………………………………... 25 二、重組蛋白質之表現與純化...….…………………………... 31 三、豬基因組H-FABP基因標準核酸序列質體選殖株建立… 33 參、結果與討論 一、基因選殖分析…..……………………………………..… 36 二、標幟重組蛋白質表現分析………………………………... 44 三、標幟重組蛋白質活性分析………………………………... 47 結論……………………………………………………………... 50 參考文獻………………………………………………………... 51 英文摘要………………………………………………………... 60 作者小傳………………………………………………………... 62 | |
dc.language.iso | zh-TW | |
dc.title | 種豬高肉質基因晶片之開發與應用 | zh_TW |
dc.title | Development and application of gene chips designed for screening of breeding pigs with high performance in meat quality | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 吳信志(Shinn-Chin Wu) | |
dc.contributor.oralexamcommittee | 陳全木(Chuan-Mu Chen),鄭金益(Jin-I Cheung),林佳靜(Chai-Ching Lin) | |
dc.subject.keyword | 基因晶片,心脂肪酸結合蛋白, | zh_TW |
dc.subject.keyword | gene chip,heart fatty acid binding protein,MutS protein, | en |
dc.relation.page | 62 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2006-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 972.68 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。