Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25754
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王興華(Ching-Hua Wang)
dc.contributor.authorWEI-HAN CHENen
dc.contributor.author陳威翰zh_TW
dc.date.accessioned2021-06-08T06:28:20Z-
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation參考文獻
[1] L. Rayleigh, “On the Instability of Jets”, Proc. London Math Soc., Vol.10, no.4, 1878. pp.4-13.
[2] L. Rayleigh, “On the Instability of a Cylinder of Viscous Liquid Under Capillary Force”, Philosophical Magazine., Vol.34, p. 145, 1892.
[3] R.G. Sweet, “High Frequency Recording with Electrostatically DeflectedInk Jets”, Stanford Electronics Laboratories Technical Report, No.1722-1, Stanford University, CA, 1964.
[4] R. G. Sweet, “High Frequency Recording with Electrostatically Deflected Ink-Jets”, Rev. Sci. Instrum., vol.36, pp.131-136, 1965
[5] H. C. Lee, “Drop Formation in a Liquid Jet”, IBM J. Res. Develop., pp.364-369, July 1974
[6] C. A. Bruce, “Dependence of Ink Jet Dynamics on Fluid Characteristics”,
IBM Journal of Research and Development, Vol. 20, p. 258-270, 1976.
[7] W. T. Pimbley, “Drop Formation from a Liquid Jet: A Linear One-
Dimensional Analysis Considered as a Boundary Value Problem”, IBM J. Res. Develop., Vol. 20, pp.148-156, March 1976
[8] W. T. Pimbley and H. C. Lee, “Satellite Droplet Formation in a Liquid Jet”,
IBM Journal of Research and Development, Vol. 21, p. 21-30, January 1977.
[9] Curry, S. A. and Portig, H., “Scale Model of an Ink Jet,” IBM J. Res. Develop
,Vol. 21, No. 1, 1977, pp. 10- 20.
[10] J. D. Beasley, “Model for Fluid Ejection and Refill in an Impulse Drive Jet”,
J. Appl. Photogr. Sci. Eng., vol.21, pp.78-82, 1977
[11] D. B. Bogy, S. J. Shine and F. E. Talke, “Finite Difference Solution of the
Cosserat Fluid Jet Equations”, Journal of Computational Physics, Vol. 38,
p.294-326, 1980.
[12] Stow, C. D. and Hadfield, M. G.,“An Experimental Investigation of Fluid
Flow Resulting From the Impact of a Water Drop with an Unyielding Dry
Surface,”Proc. R. Soc. London A, Vol. 373, pp. 419-441, 1981.
[13] N. Bugdayci, D. B. Bogy and F. E. Talke, “Axisymmetric Motion of Radially
Polarized Piezoelectric Cylinders Used in Ink Jet Printing”, IBM Journal of
Research and Development, Vol. 27, No. 2, p. 171-180, March,1983.
[14] D. B. Bogy and F. E. Talke, “Experimental and Theoretical Study of Wave
Propagation Phenomena in Drop-on-Demand Inkjet Devices”, IBM Journal
of Research and Development, Vol. 28, No. 3, p. 314-321, 1984.
[15] J. E. Fromm, “Numerical Calculation of the Fluid Dynamics of Drop-on-
Demand Jets,” IBM Journal of Research and Development, Vol. 28, no. 3,
p. 322-333, May 1984.
[16] Adams, R. L. and Roy, J., “A One-dimensional Numerical Model of a Drop-
on- Demand Ink Jet,” Journal of Applied Mechanics, Vol. 53, No. 1, 1986,
pp. 193-197.
[17] Asai, H., Toshitami, H., and Ichiro, E., “One-dimensional Model of Bubble
Growth and Liquid Flow in Bubble Jet Printers,”Journal of Japan Society of
Applied Physics, Vol. 26, No. 10,1987, pp. 1794-1801.
[18] T. W. Shield, D. B. Bogy and F. E. Talke, “Drop Formation by DOD Ink-Jet
Nozzles: A Comparison of Experiment and Numerical Simulation”, IBM
Journal of Research and Development, Vol. 31, No. 1, p. 96-110, Jan.1987.
[19] S.D.R. Wilson, “The slow dripping of a viscous fluid”, J. FluidMech. 190,
561 (1988).
[20] D.H. Peregrine, G. Shoker, and A. Symon, “The bifurcation of liquidbridges”
, J. Fluid Mech. 212, 25 (1990).
[21] H. Asai, “Three-Dimensional Calculation of Bubble Growth and Drop
Ejection in a Bubble Jet Printer”, Journal of Fluids Engineering, Vol. 114,
No. 4, p.638-641, 1992.
[22] J. R. Richards, A.M. Lenhoff, and A.N. Beris, “Dynamic breakup of liquid-
liqid jets”, Phys. Fluids 6, 2640 (1994).
[23] R. M. S. M. Schulkes, “The evolution and bifurcation of a pendantdrop”,
J. Fluid Mech, 278, 83 (1994).
[24] J. Eggers and T.F. Dupont, “Drop formation in a one-dimensional
approximation of the Navier-Stokes equation”, J. Fluid Mech. 262,205 (1994).
[25] X. Zhang and O.A. Basaran, “An experimental study of dynamics of drop
formation”, Phys. Fluids 7, 1184 (1995).
[26] Chen, P. H., Chen, W. C., and Chang, S. H., “Bubble Growth and Ink
Ejection Process of a Thermal Ink Jet Printhead,”International Journal of
Mechanical Sciences, Vol. 39, No. 6,1997, pp. 683–695.
[27] Chen, W. C., Chen, P. H., and Chang, S. H., “Development of Droplet String
Injected by Thermal Bubble Printhead,” Proceeding of 14th Mechanical
Engineering Conference, R.O.C., 1997, pp.70–77.
[28] D. M. Henderson, W. G. Pritchard, and L. B. Smolka, “On the pinchoff of a
pendant drop of viscous fluid”, Phy. Fluids 9, 3188 (1997).
[29]E.D. Wilkes, S.D. Phillips and O.A. Basaran, ”Computational
andexperimental analysis of dynamics of drop formation”, Phys.Fluids(1998).
[30] Chen, P. H., Peng, H. Y., Liu, H. Y., Chang, S. L., Wu, T. I., and Cheng, C. H.
, “Pressure Response and Droplet Ejection of a Piezoelectric Inkjet
Printhead,” International Journal of Mechanical Sciences, Vol. 41,
No. 2, 1999, pp. 235–248.
[31] Rembe, C., Wiesche, S., and Hofer, E. P., “Thermal Ink Jet Dynamics:
Modeling, Simulation, and Testing,” Microelectronics Reliability, Vol. 40,
No. 3, 2000, pp. 525–532.
[32] Jyi-Tyan Yeh, “Simulation and Industrial Applications of Inkjet”, The 7th
National Computational Fluid Dynamics Conference, 2000
[33] Yeh, J. T., “A VOF-FEM and Coupled Inkjet Simulation,” Proceedings of
ASME Fluids Engineering Division Summer Meeting, FEDSM2001-18182,
New Orleans, Louisiana, 2001
[34] Liou, T. M., Chau, S. W., Chen, S. C., and Shih, K. C.,
“NumericalInvestigation of Droplet Behavior in Inkjet Printing Process,”
The9th National Computational Fluid Dynamics Conference,
Tai-Nan,Taiwan, August, 2002.
[35] T. M. Liou, K. C. Shih, S. W. Chau and S. C. Chen, “Three Dimensional
Simulations of the Droplet Formation during the Inkjet Printing Process”
,International Communications in Heat and Mass Transfer, Vol. 29, No. 8,
p.1109-1118, 2002.
[36] Yang, J. C. , Chiu, C. L. , Wu, C. L. ,Chen, C. T. , Chen, H. L. ,Yang, M. D. ,
Mo, C. Y. , Lo, C. B. , Chen, C. J., “The Simulation Of The Viscosity And
Surface Tension For The Inkjet Print Head, ”IS&T`s NIP19: International
Conference On Digital Printing Technologies, 2003.
[37] W. S. Hwang, H. C. Wu,H. J. Lin, “Development of a three-dimensional
simulation system for micro-inkjet and its experimental verification”
Materials Science and Engineering A,No.373, p.268-278,2004.
[38] 陳正杰, “液滴撞擊平板及半圓型液膜之動態分析與研究” 國立台灣大學
機械工程研究所碩士論文, 2004
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25754-
dc.description.abstract本文針對不同大小之壓電晶片進行壓電式液滴產生器的結構設計及性能測試,並建立一套液滴產生觀測設備,經由改變多種參數,且藉由攝影所擷取的瞬間影像來了解液滴產生之行為,著重於觀測液滴產生之動態過程並取得穩定成型之訊號範圍與成型的粒徑、速度、時間等資訊,期能提供微液滴產生現象明確而充分的資料,進而對產生液滴成型機制有進一步的研究探討。
過去對液滴產生之研究雖多,卻極少完整的比較不同參數下的成型特性及確切的穩定範圍,本實驗的控制參數為液滴產生器大小、液料性質、噴嘴孔徑及形狀、操作頻率及意外發現的訊號正反向輸入。
本實驗主要探討三部份:一為不同液滴產生器大小配合油料改變對成型現象的影響;二為製作同孔徑但出口形狀極端的噴嘴配合油料改變對成型現象的影響;三為訊號的反向輸入使壓電晶片反向變形的成型特性分析,最後將實驗數據加以分析。
zh_TW
dc.description.abstractThis text aims at different size of piezo wafer to giving an structure design and performance test for piezoelectric droplet generator, and build up a set of device to observe , through change various parameters and gather the moment image by CCD camera to understand produce the droplet, put great emphasis on gauging the dynamic state process of produce the droplet ,then obtain stability shaping signal range and information (like diameter, velocity, broken time etc…) for shaping, wish to provide explicit and full data for micro-droplet producing phenomenon, and then to go a step further investigate and inquire to droplet producing .

Although in the past there was many research of droplet producing, but the complete compare for shaping property under different parameters and accurate stable range was less. The control variable of this experiment are size of droplet generator, fluid properties, shapes and bore diameter of nozzle, operation frequency, and a windfall two-way signal input.
This experiment mainly inquires into three parts : one is the different size of droplet generator match up fluid properties influence of droplet shaping phenomenon, the other is nozzle have the same bore diameter but different outlet shape match up fluid properties influence of droplet shaping phenomenon, last is the shaping property analysis for piezo wafer change shape opposite by signal input opposite, then analyze the experiment data.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:28:20Z (GMT). No. of bitstreams: 1
ntu-95-R93522108-1.pdf: 3561822 bytes, checksum: b3ae390db2da874410e1a0516e26cceb (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目 錄
中文摘要………………………………………………………………………..……Ⅰ
英文摘要……………..................................................................................................Ⅱ
目錄……………………………………………………………………………..……Ⅲ
圖表照片目錄………………………………………………………..………………Ⅵ
第一章 緒論………………………………………………………………………1
1-1 前言…………………………………………………………………1
1-2 文獻回顧………………………………………………………..…2
1-3 研究動機及目的………………………………………………..…7
第二章 實驗裝置與步驟…………………………………………………………8
2-1 液滴產生裝置…………………………………………………………8
2-1-1 液滴產生方式……………………………………………………8
2-1-2 液滴產生器………………………………………………………8
2-1-3 電子控制裝置……………………………………………………9
2-2 影像拍攝系統……………………………………………..…………10
2-2-1 閃頻儀(Digital Stroboscope) ………………………………10
2-2-2 C.C.D.及放大鏡頭組………………………………..…………10
2-3 影像處理系統……………………………………………..…………10
2-4 實驗操作與拍攝……………………………………………..………11
2-4-1 液滴的產生與控制………………………………………..……11
2-4-2 液滴成型穩定範圍及成型特性實驗………………………..…11
2-5 實驗數據讀取與分析處理………………………………………..…12
2-5-1 讀取實驗數據………………………………………………..…13
2-5-2 數據的分析處理……………………………………………..…13
2-6 實驗數據之誤差分析……………………………………………..…14
第三章 裝置介紹及基礎理論………………………………………………..…15
3-1 壓電材料簡介………………………………………………..………15
3-2 液滴產生模式簡介………………………………………..…………16
3-2-1 液滴產生方式基本分類 ………………………………………16
3-2-2 本實驗正反向操作成型方式介紹…………………………..…19
3-3 基礎理論…………………………………………………………..…20
3-3-1 液柱拉伸斷裂理論……………………………..………………20
3-3-2 壓力波傳遞理論……………………………………………..…21
3-3-3 低速噴流之斷裂理論………………………………………..…23
第四章 結果分析與討論…………………………………………………..……26
4-1 訊號正向輸入配合各項參數的分析比較……………………..……26
4-1-1 訊號正向輸入各配合組數在四頻率成型特性比較…………..26
4-1-2 訊號正向輸入配合極端出口形狀在四頻率成型
特性比較………………………………………………………..33
4-1-3 訊號正向輸入配合小孔徑在15Hz同油料不同出口
形狀成型特性比較……………………………………..………35
4-1-4 訊號正向輸入大小孔徑在15Hz同油料不同產生器
成型特性比較……………………………………………..……36
4-1-5 訊號正向輸入大小孔徑在15Hz同產生器不同油料
成型特性比較……………………………………..……………37
4-2 訊號反向輸入配合各項參數的分析比較………………………..…39
4-2-1 訊號反向輸入各配合組數分別在四頻率成型
特性比較………………………………………………………..39
4-2-2 訊號反向輸入配合極端出口形狀在四頻率成型
特性比較………………………………………………..………43
4-2-3 訊號反向輸入配合小孔徑在15Hz同油料不同出口
形狀成型特性比較……………………..………………………44
4-2-4 訊號反向輸入大小孔徑在15Hz同油料不同產生器
成型特性比較………..…………………………………………44
4-2-5 訊號反向輸入大小孔徑在15Hz同產生器不同油料
成型特性比較…………..………………………………………45
4-3 正反向訊號輸入比較…………..……………………………………46
第五章 結論及建議…………………………..…………………………………47
參考文獻…………………………………………………………..…………………52
dc.language.isozh-TW
dc.subject壓電zh_TW
dc.subject液滴產生器zh_TW
dc.subject微液滴zh_TW
dc.subject衛星液滴zh_TW
dc.subjectSatellite dropen
dc.subjectmicro-dropleten
dc.subjectdroplet generatoren
dc.subjectpiezoelectricen
dc.title利用壓電致動器成型穩定微液滴之
實驗研究
zh_TW
dc.titleThe study on the formation of stable micro-liquid droplet—by the using of piezoelectric transduceren
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee馬小康(Hsiao-Kan Ma),顏瑞和(Ruei-He Yen),楊照彥(Jaw-Yen Yang)
dc.subject.keyword壓電,液滴產生器,微液滴,衛星液滴,zh_TW
dc.subject.keywordpiezoelectric,droplet generator,micro-droplet,Satellite drop,en
dc.relation.page107
dc.rights.note未授權
dc.date.accepted2006-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
3.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved