請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25705完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 嚴震東,蔡孟利,陳瑞芬 | |
| dc.contributor.author | Wan-Ting Tseng | en |
| dc.contributor.author | 曾琬婷 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:25:46Z | - |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | Altura BT & Altura BM. (1975). Pentobarbital and contraction of vascular smooth muscle. Am J Physiol 229, 1635-1640.
Andrezik JA, Chan-Palay V & Palay SL. (1981). The nucleus paragigantocellularis lateralis in the rat. Conformation and cytology. Anat Embryol (Berl) 161, 355-371. Barman SM & Gebber GL. (1997). Subgroups of rostral ventrolateral medullary and caudal medullary raphe neurons based on patterns of relationship to sympathetic nerve discharge and axonal projections. J Neurophysiol 77, 65-75. Barres C, Cheng Y & Julien C. (2004). Steady-state and dynamic responses of renal sympathetic nerve activity to air-jet stress in sinoaortic denervated rats. Hypertension 43, 629-635. Bertram D, Orea V, Chapuis B, Barres C & Julien C. (2005). Differential responses of frequency components of renal sympathetic nerve activity to arterial pressure changes in conscious rats. Am J Physiol 289, R1074-1082. Blessing WW & Nalivaiko E. (2000). Regional blood flow and nociceptive stimuli in rabbits: patterning by medullary raphe, not ventrolateral medulla. J Physiol 524 Pt 1, 279-292. Brooks VL & Osborn JW. (1995). Hormonal-sympathetic interactions in long-term regulation of arterial pressure: an hypothesis. Am J Physiol 268, R1343-1358. Brown DR, Brown LV, Patwardhan A & Randall DC. (1994). Sympathetic activity and blood pressure are tightly coupled at 0.4 Hz in conscious rats. Am J Physiol 267, R1378-1384. Burgess DE, Hundley JC, Li SG, Randall DC & Brown DR. (1997). First-order differential-delay equation for the baroreflex predicts the 0.4-Hz blood pressure rhythm in rats. Am J Physiol 273, R1878-1884. Chalmers J & Pilowsky P. (1991). Brainstem and bulbospinal neurotransmitter systems in the control of blood pressure. J Hypertens 9, 675-694. Cheng Y, Cohen B, Orea V, Barres C & Julien C. (2004). Baroreflex control of renal sympathetic nerve activity and spontaneous rhythms at Mayer wave's frequency in rats. Auton Neurosci 111, 80-88. Dampney RA, Coleman MJ, Fontes MA, Hirooka Y, Horiuchi J, Li YW, Polson JW, Potts PD & Tagawa T. (2002). Central mechanisms underlying short- and long-term regulation of the cardiovascular system. Clin Exp Pharmacol Physiol 29, 261-268. deBoer RW, Karemaker JM & Strackee J. (1987). Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol 253, H680-689. Guyenet PG. (1990). Role of ventral medulla oblongata in blood pressure regulation. Oxford University Press, New York, N.Y.. Habler HJ, Janig W & Michaelis M. (1994). Respiratory modulation in the activity of sympathetic neurones. Prog Neurobiol 43, 567-606. Ito S, Komatsu K, Tsukamoto K & Sved AF. (2000). Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats. Hypertension 35, 413-417. Janig W & Habler HJ. (2003). Neurophysiological analysis of target-related sympathetic pathways--from animal to human: similarities and differences. Acta Physiol Scand 177, 255-274. Jansen AS, Nguyen XV, Karpitskiy V, Mettenleiter TC & Loewy AD. (1995). Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644-646. Japundzic N, Grichois ML, Zitoun P, Laude D & Elghozi JL. (1990). Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst 30, 91-100. Julien C, Chapuis B, Cheng Y & Barres C. (2003). Dynamic interactions between arterial pressure and sympathetic nerve activity: role of arterial baroreceptors. Am J Physiol 285, R834-841. Julien C, Malpas SC & Stauss HM. (2001). Sympathetic modulation of blood pressure variability. J Hypertens 19, 1707-1712. Kunitake T & Kannan H. (2000). Discharge pattern of renal sympathetic nerve activity in the conscious rat: spectral analysis of integrated activity. J Neurophysiol 84, 2859-2867. Kuo TB, Yang CC & Chan SH. (1997a). Selective activation of vasomotor component of SAP spectrum by nucleus reticularis ventrolateralis in rats. Am J Physiol 272, H485-492. Kuo TB, Yien HW, Hseu SS, Yang CC, Lin YY, Lee LC & Chan SH. (1997b). Diminished vasomotor component of systemic arterial pressure signals and baroreflex in brain death. Am J Physiol 273, H1291-1298. Lin JC, Tsao WL & Wang Y. (1995). Cardiovascular effects of NMDA in the RVLM of spontaneously hypertensive rats. Brain Res Bull 37, 289-294. Madwed JB, Albrecht P, Mark RG & Cohen RJ. (1989). Low-frequency oscillations in arterial pressure and heart rate: a simple computer model. Am J Physiol 256, H1573-1579. Malpas SC. (1998). The rhythmicity of sympathetic nerve activity. Prog Neurobiol 56, 65-96. Montano N, Cogliati C, da Silva VJ, Gnecchi-Ruscone T, Massimini M, Porta A & Malliani A. (2000). Effects of spinal section and of positive-feedback excitatory reflex on sympathetic and heart rate variability. Hypertension 36, 1029-1034. Montano N, Gnecchi-Ruscone T, Porta A, Lombardi F, Malliani A & Barman SM. (1996). Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system. J Auton Nerv Syst 57, 116-122. Newman DB. (1985). Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei. J Hirnforsch 26, 385-418. Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM & Reis DJ. (1984). Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4, 474-494. Ruggiero DA, Cravo SL, Arango V & Reis DJ. (1989). Central control of the circulation by the rostral ventrolateral reticular nucleus: anatomical substrates. Prog Brain Res 81, 49-79. Schreihofer AM & Guyenet PG. (1997). Identification of C1 presympathetic neurons in rat rostral ventrolateral medulla by juxtacellular labeling in vivo. J Comp Neurol 387, 524-536. Schreihofer AM, Stornetta RL & Guyenet PG. (2000). Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. J Physiol 529 Pt 1, 221-236. Shimokawa A, Kunitake T, Takasaki M & Kannan H. (1998). Differential effects of anesthetics on sympathetic nerve activity and arterial baroreceptor reflex in chronically instrumented rats. J Auton Nerv Syst 72, 46-54. Sved AF, Cano G & Card JP. (2001). Neuroanatomical specificity of the circuits controlling sympathetic outflow to different targets. Clin Exp Pharmacol Physiol 28, 115-119. Tsai ML, Shaw FZ & Yen CT. (1999). Quantitative relationship between fluctuations of blood pressure and sympathetic nerve activity in pentobarbital anesthetized rats. Neurosci Lett 263, 85-88. Tsuchihashi T, Abe I & Fujishima M. (1994). Role of metabotropic glutamate receptors in ventrolateral medulla of hypertensive rats. Hypertension 24, 648-652. Yang TL, Chai CY & Yen CT. (1995). Enhanced sympathetic reactivity to glutamate stimulation in medulla oblongata of spontaneously hypertensive rats. Am J Physiol 268, H1499-1509. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25705 | - |
| dc.description.abstract | 交感神經活性對於心血管的調控相當重要。目前已知血壓律動與交感神經訊號律動在低頻(約0.45 Hz)有極高的相關性,反應出交感神經對於血管管徑的調控行為。但直至目前,0~1 Hz交感神經律動的頻譜組成與來源仍不清楚。因此本研究分兩部份實驗來解決問題。第一部分為直接紀錄清醒老鼠的腎交感神經活性與血壓,以頻譜分析方法探討0~1 Hz的交感神經律動頻譜組成究竟為何?並分析該頻段的交感神經律動與同頻段血壓律動之量化關係。第二部份則是選擇交感神經活性的主要輸入來源-延腦腹側核區(rostral ventrolateral medulla; RVLM)作為研究對象,探討RVLM中是否有參予0~1 Hz內特別頻段的交感神經律動之神經元。第一部份實驗在平均7隻老鼠0~1 Hz的交感神經頻譜後,發現0~1 Hz的交感神經頻譜組成具有兩個高峰(peak),peak frequency分別是0.16 Hz (極低頻區)與0.45 Hz(低頻區)。另發現0.016~0.85 Hz交感神經的頻譜與血壓的頻譜功率比值之對數值,對應頻率的關係為線性負相關。第二部份的實驗則採用7隻雄性老鼠,於麻醉、人工控制呼吸的狀況下進行細胞外紀錄,並同時量測血壓與交感神經活性。將所記錄到的85個RVLM神經元,利用其對應血壓變化的關係分成三群:(1)與血壓變化負相關者(negatively response with blood pressure),簡稱BP(-)。(2) 與血壓變化正相關者(positively response with blood pressure),簡稱BP(+)。(3)與血壓變化無關係者,簡稱control。透過coherence analysis,發現BP(-)可能是主要貢獻極低頻區(0~0.3 Hz)、低頻(0.3~0.6 Hz)與高頻(0.6~1 Hz)交感神經律動的來源。其中,貢獻低頻與高頻的BP(-)神經元放電後,會興奮交感神經活性。因此,推測RVLM內包含功能性不同的神經元類群,但其中還是以受到感壓反射調節的BP(-)神經元對於0~1 Hz交感神經頻譜的極低頻區和低頻區的貢獻程度最高。 | zh_TW |
| dc.description.abstract | Sympathetic nerve activity (SNA) is important in regulation of cardiovascular functions. Slow oscillations in blood pressure fluctuation is highly correlated with SNA fluctuation of the same frequency, and some studies suggest that this slow rhythms reflect the sympathetic modulation of resistance vessels. However, the frequency components and the origin of sympathetic rhythms at 0~1 Hz is still not clear. Therefore, two objectives of this study is to figure out the frequency components of sympathetic oscillations at 0~1 Hz and to determine whether different RVLM neurons, which are critically important in the generation of the sympathetic rhythms, contributed to specific frequencies in SNA. Blood pressure and renal SNA were recorded simultaneously in awaked rats. Group- average spectra of SNA in 7 rats showed that spectral power both in the very low frequency(VLF) range and low frequency(LF) range were prominent in sympathetic rhythms at 0~1 Hz. In addition, the second experiment was performed. Blood pressure, renal SNA and neuronal activity in RVLM were recorded simultaneously in anesthetized, paralyzed and artificially ventilated rats. We found 85 RVLM neurons recorded. Neuronal activity changed in response to increased blood pressure were used to classify RVLM neurons into three groups, including negatively response with blood pressure (BP(-) neurons), positively response with blood pressure (BP(+) neurons) and no response with blood pressure (control). According to coherence analysis, BP(-) may provide the major contribution to all three frequency bands in the sympathetic rhythms. Among them, neurons which contributed to LF range and HF range excited SNA while these neurons were firing. These results show that there may be separate functional group in the RVLM, but only one group of neurons that were modulated by baroreflex contribute to both VLF and LF rhythms in SNA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:25:46Z (GMT). No. of bitstreams: 1 ntu-95-R93b41007-1.pdf: 1091371 bytes, checksum: 5c8e0e23d1dcc55e232529658623f21c (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 iii 致謝 v 目錄 vi 一、緒論: 1 1.1. 交感神經活性與血壓 1 1.2. 延腦吻端腹側核區與交感神經活性 3 二、研究目的: 5 三、材料與方法: 6 3.1. 清醒動物0~1 Hz交感神經律動之頻譜組成,以及和血壓頻譜間之量化關係 6 3.2 RVLM神經元對於0~1 Hz交感神經律動頻譜組成之貢獻 9 四、結果: 13 五、討論: 17 5.1. 交感神經律動於動物清醒時,在頻率範圍0~1 Hz的頻譜組成 17 5.2. 0~1 Hz交感神經律動組成與血壓律動間的關係 18 5.3. RVLM對於1 Hz以下的交感神經律動組成之貢獻 19 5.4. RVLM中記錄到與呼吸相關神經元的可能原因 20 六、參考文獻: 21 表、 26 圖、 28 | |
| dc.language.iso | zh-TW | |
| dc.subject | 交感神經活性 | zh_TW |
| dc.subject | 頻譜分析 | zh_TW |
| dc.subject | 延腦 | zh_TW |
| dc.subject | 神經細胞外紀錄 | zh_TW |
| dc.subject | power spectral analysis | en |
| dc.subject | medulla | en |
| dc.subject | extracellular recording | en |
| dc.subject | sympathetic nerve activity | en |
| dc.title | 延腦吻端腹側核區神經元對於不同頻段0~1 Hz交感神經律動之貢獻 | zh_TW |
| dc.title | Differential contribution of rostral ventrolateral medullary neurons to frequency components of sympathetic rhythm at 0~1 Hz | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃基礎,蘇俊魁,閔明源 | |
| dc.subject.keyword | 延腦,神經細胞外紀錄,交感神經活性,頻譜分析, | zh_TW |
| dc.subject.keyword | medulla,extracellular recording,sympathetic nerve activity,power spectral analysis, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2006-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
