請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳炳煇 | |
| dc.contributor.author | Yi-Ting Cheng | en |
| dc.contributor.author | 鄭伊廷 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:24:13Z | - |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-27 | |
| dc.identifier.citation | Andersson, H., Jonsson, C., Moberg, C. and Stemme, G., 2001, “Consecutive microcontact printing—ligands for asymmetric catalysis in silicon channels,” Sensors and Actuators B, 79, pp. 78–84.
Becker H. and Locascio L.E., 2002, “Polymer microfluidic devices,” Talanta, 56, pp. 267-287. Cai, H., Xu, C., He, P. and Fang, Y., 2001, ”Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA,” Journal of Electroanalytical Chemistry, 510, pp. 78– 85. Drummond, T., Hill, M. and Barton, J., 2003, “Electrochemical DNA biosensors,” Nature Biotechnology, 21, pp. 1192–1199. Duffy, D.C., Gillis, H.L., Lin, J., Sheppard Jr., N.F. and Kellogg, G.J., 1999, “Microfabricated centrifugal microfluidic systems: characterization and multiple enzymatic assays,” Analytical Chemistry, 71, pp. 4669–4698. Erickson, D., Li, D. and Krull, U.J., 2003, “Modeling of DNA hybridization kinetics for spatially resolved biochips,” Analytical Biochemistry, 317, pp.186-200. French, P.J., 2002, “Polysilicon: a versatile material for Microsystems,” Sensors and Actuators A, 99, pp. 3-12. Gooding, J. J., 2002, “Electrochemical DNA hybridization biosensors,” Electroanalysis, 14, pp. 1149-1156. Howley, P. M., Israel, M. F., Law, M. F. and Martin, M. A., 1979, “A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes,” Journal of Biological Chemistry, 254, pp.4876-4883. Kelley, S. O., Boon, E. M., Barton, J. K., Jackson, N. M. and Hill, M. G., 1999, “Single-base mismatch detection based on charge transduction through DNA,” Nucleic Acids Research, 27, pp. 4830-4837. Kerman, K., Saito, M., Morita, Y., Takamura, Y., Ozsoz, M. and Tamiya, E., 2004, “Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles,” Analytical Chemistry, 76, pp. 1877-1884. Kock, M., Evans, A. and Brunnschweiler, A., 2000, Microfluidic Technology and Applications, Research Studies Press, Hertfordshire, UK. Leon, I., Amador, R. and Kohlhof, K., 2004, “Evaluation of MUMPS polysilicon structures for thermal flow sensors,” Microelectronics Reliability, 44, pp. 651-655. Li, J., Xue, M., Lu, Z., Zhang, Z. K., Feng, C. G., and Chan, M. S., 2003, “A High-Density Conduction-Based Micro-DNA Identification Array Fabricated With a CMOS Compatible Process,” IEEE Transactions on Electron Devices, 50, pp. 2165-2170. Manz, A., Graber, N. and Widmer, H. M., 1990, “Miniaturized total chemical analysis systems: A novel concept for chemical sensing,” Sensors and Actuators B, 1, pp. 244-248. Marmur, J. and Doty, P.,1962, “Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature,” Journal of Molecular Biology, 5, pp. 109-118. Millan, K. M. and Mikkelsen, S. R., 1993, “Sequence-selective biosensor for DNA based on electroactive hybridization indicators” Analytical Chemistry, 65, pp. 2317-2323. Millan, K. M., Saraullo, S. and Mikkelsen, S. R., 1994, “Voltammetric DNA biosensor for cystic fibrosis based on a modified carbon paste electrode,” Analytical Chemistry, 66, pp. 2943–2948. Minunni, M., Tombelli, S., Scielzi, R., Mannelli, I., Mascini, M. and Gaudiano, C., 2003, “Detection of β-thalassemia by a DNA piezoelectric biosensor coupled with polymerase chain reaction,” Analytica Chimica Acta, 481, pp. 55-64. Moreno-Hagelsieb, L., Lobert, P. E., Pampin, R., Bourgeois, D., Remacle, J. and Flandre, D., 2004, “Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes,” Sensors and Actuators B, 98, pp.269-274. Ng, J. M. K., Gitlin, I., Stroock, A. D. and Whitesides, G.M., 2002, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis, 23, pp. 3461-3472. Park, S. J., Taton, T. A. and Mirkin, C. A., 2002, “Array-based electrical detection of DNA with nanoparticle probes,” Science, 295, pp. 1503-1506. Piunno, P. A. E., Krull, U. J., Hudson, R. H. E., Damha, M. J. and Cohen, H., 1994, “Fiber optic biosensor for fluorimetric detection of DNA hybridization,” Analytica Chimica Acta, 288, pp. 205-254. Rychlik, W. and Rhoads, R. E., 1989, ”A computer program for choosing optimal oligonucleotides for filter hybridization, sequencing and in vitro amplification of DNA,” Nucleic Acids Research, 17, pp. 8543-8551. Schork, N. J., Fallin, D. and Lanchbury, J. S., 2000, “Single nucleotide polymorphisms and the future of genetic epidemiology,” Clinical Genetics,58, pp. 250-264. Sedra, A. S. and Smith, K.C., 1998, Field-effect transistors (FETs) Microelectronic Circuit, Oxford University Press, New York. Seto J. Y. W., 1975, “The electrical properties of polycrystalline silicon films,” Journal of Applied Physics, 46(12), pp. 5247-5254. Sawata, S., Kai, E., Ikebukuro, K., Iida, T., Honda, T. and Karube, I., 1999, “Application of peptide nucleic acid to the direct detection of deoxyribonucleic acid amplified by polymerase chain reaction,” Biosensors and Bioelectronics, 14, pp. 397-404. Tabata, O., 1996, “pH-controlled TMAH etchants for silicon micromachining,” Sensors and Actuators A, 53, pp.335-339. Tsai, C. Y., Tsai, Y. H., Pun, C. C., Chan, B., Luh, T. Y., Chen, C. C., Ko, F. H., Chen, P. J. and Chen, P. H., 2005, ”Electrical Detection of DNA Hybridization with Multilayer Gold Nanoparticles between Nanogap Electrodes,” Microsystem Technologies, 11, pp. 91-96. TSMC, 2003, TSMC 0.35μm 2P4M 3.3V Design Rule. Van Oudheusden, B. W., 1992, “Silicon thermal flow sensors,” Sensors and Actuators A, 30, pp. 5-26. Wang, J., 2002, “Electrochemical nucleic acid biosensors,” Analytica Chimica Acta,288, pp. 205-214. Wetmur, J. G., 1991, “DNA probes: applications of the principles of nucleic acid Hybridization,” Critical Reviews in Biochemistry Molecular Biology, 26, pp. 227-259. Zhang, B., Zhang, Z. J., Wang, B., Yan, J., Li, J. J. and Cai, S. M., 2001, “Preparation of gold nano-arrayed electrode on silicon substrate and its electrochemical properties,” Acta Chimica Sinica , 59, pp. 1932-1936. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25675 | - |
| dc.description.abstract | An integrated DNA detection system using CMOS-MEMS technology was developed in this thesis. The integrated DNA detection system includes two parts: 1. CMOS biochip: The CMOS biochip, which is fabricated by TSMC 0.35 um 2P4M standard CMOS process combined with post-micromachining processes, is composed of DNA biosensors (microelectrodes), a current amplifier circuit, and a temperature system for single base pair mismatch detection. 2. Integrated microfluidic device: A glass substrate where the CMOS biochip was bonded and a PDMS microfluidic chip.
A novel technique using a self-assembly method combined with cascode current mirrors to amplify electrical signals is presented. The electric current passing through the gold nanoparticle multilayer, which is formed by complementary target DNA, exceeds that through the gold nanoparticle monolayer by three orders of magnitude. The lowest detectable concentration of target DNA on this biochip is 0.1 nM. After being amplified by the current mirrors, the electrical signal of the multilayer gold nanoparticle structure over a nanogap is successfully amplified to the level of mA and can then be measured by a commercial Volt-ohm-Milliammeter. With temperature sensors and heaters, single mutation of target DNA could be distinguished by about 2oC difference in melting temperature. Finally, after the combination of CMOS biochip and PDMS microfluidic chip, the whole DNA detection system can be portable and the ability of automation can be also increased. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:24:13Z (GMT). No. of bitstreams: 1 ntu-95-F91522102-1.pdf: 4616165 bytes, checksum: 551cdad3d24f664a38fcea0538e90e4d (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Acknowledgement I
Abstract II Nomenclature IV Table of Content V List of Tables VIII List of Figures X Chapter 1 Introduction 1 1.1 General Remarks 1 1.2 Motivation and Objectives 3 1.3 Literature Survey 6 1.3.1 Gold Nanoparticle Probes for Electrical Detection of DNA 6 1.3.2 CMOS Compatible Materials as Temperature Sensor 7 1.3.3 Integrated Microfluidic Device 8 1.4 Thesis Outline 9 Chapter 2 Design Principle 14 2.1 Principle of Electrical DNA Detection Method 14 2.2 Principle of Single Base Pair Mismatch Detection 16 2.2.1 Melting Temperature Calculations 17 2.3 Design Principles and Simulation of Temperature System 18 2.2.1 Design Principles of Temperature System 18 2.2.2 ANSYS Simulation of Temperature System 19 2.4 Circuit Design of Current Amplifier 20 2.5 Design of the CMOS Biochip 21 2.5.1 CMOS 0.35 um 2P4M Whole Chip Layout 22 2.5.2 Subsystems of the CMOS biochip 23 Chapter 3 Post-CMOS Micromachining Process 36 3.1 Post-CMOS Micromachining Process Flow of the CMOS Biochip 36 3.2 Isotropic Wet Etching for Metal Layer 37 3.3 Anisotropic Dry Etching for Silicon Dioxide 38 3.4 Anisotropic Wet Etching for Silicon Substrate 38 3.5 Microelectrode Formation 39 3.6 Etching Depth Ruler 39 3.7 Wire Bonding 40 Chapter 4 Integrated Microfluidic Device 51 4.1 Fabrication Processes of Integrated Microfluidic Device 51 4.1.1 Fabrication Processes of Detection Electrodes on Glass Slide 51 4.1.2 Fabrication Processes of PDMS Microfluidic Chip 52 4.2 Detection Principle of Integrated Microfluidic Device 53 4.2.1 Preparation Step of the Integrated System 53 4.2.2 Detection Step of the Integrated System 54 Chapter 5 Experimental Apparatuses and Procedures 66 5.1 Experimental Apparatuses 66 5.1.1 Experimental Apparatuses Used in Post-CMOS Process 66 5.1.2 Experimental Apparatuses Used in Integrated Microfluidic Device Fabrication process 66 5.1.3 Measurement Apparatus 67 5.2 Experimental Reagents 68 5.3 Experimental Procedures 70 5.3.1 Experimental Procedures of DNA Hybridization of Self-assembly Multilayer Gold Nanoparticle (AuNP) 70 5.3.2 Calibration Procedure for the Relationship Between Resistance and Temperature of Temperature Sensor (Poly 2) 72 5.3.3 Experimental Procedure of Single Base Pair Mismatch Detection 72 Chapter 6 Results and Discussion 86 6.1 Electrical DNA Detection of CMOS Biochip 86 6.2 Results of Single Base Pair Mismatch Detection 87 6.2.1 Calculation of Melting Temperature 87 6.2.2 ANSYS Simulation Results of Temperature System 88 6.2.3 Experimental Results of Single Base Pair Mismatch Detection 88 6.3 Experimental Results of CMOS Biochip Integrated with Current Amplifier Circuit 89 6.4 Experimental Results of Integrated Microfluidic Device 90 Chapter 7 Conclusions and Future Prospects 101 References 103 | |
| dc.language.iso | en | |
| dc.subject | 自組裝 | zh_TW |
| dc.subject | 微流體晶片 | zh_TW |
| dc.subject | 單一鹼基錯位 | zh_TW |
| dc.subject | DNA 檢測 | zh_TW |
| dc.subject | 電流放大器 | zh_TW |
| dc.subject | CMOS | zh_TW |
| dc.subject | 奈米金粒子 | zh_TW |
| dc.subject | CMOS | en |
| dc.subject | microfluidic chip | en |
| dc.subject | single base pair mismatch | en |
| dc.subject | current amplifier | en |
| dc.subject | self-assembly | en |
| dc.subject | gold nanoparticles | en |
| dc.subject | DNA detection | en |
| dc.title | 以CMOS-MEMS技術開發之整合型DNA檢測系統 | zh_TW |
| dc.title | Development of an Integrated DNA Detection
System Using CMOS-MEMS Technology | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 戴慶良,顏家鈺,楊燿州,苗志銘,李達生 | |
| dc.subject.keyword | CMOS,DNA 檢測,奈米金粒子,自組裝,電流放大器,單一鹼基錯位,微流體晶片, | zh_TW |
| dc.subject.keyword | CMOS,DNA detection,gold nanoparticles,self-assembly,current amplifier,single base pair mismatch,microfluidic chip, | en |
| dc.relation.page | 107 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2006-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 4.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
