請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25580完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周子賓(Tze-Bin Chou) | |
| dc.contributor.author | Chao-Han Chen | en |
| dc.contributor.author | 陳昭翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:19:41Z | - |
| dc.date.copyright | 2006-10-25 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-10-17 | |
| dc.identifier.citation | Reference List
Bai,R.Y., Koester,C., Ouyang,T., Hahn,S.A., Hammerschmidt,M., Peschel,C., and Duyster,J. (2002). SMIF, a Smad4-interacting protein that functions as a co-activator in TGFbeta signalling. Nat. Cell Biol. 4, 181-190. Ball,L.J., Kuhne,R., Hoffmann,B., Hafner,A., Schmieder,P., Volkmer-Engert,R., Hof,M., Wahl,M., Schneider-Mergener,J., Walter,U., Oschkinat,H., and Jarchau,T. (2000). Dual epitope recognition by the VASP EVH1 domain modulates polyproline ligand specificity and binding affinity. EMBO J. 19, 4903-4914. Bardsley,A., McDonald,K., and Boswell,R.E. (1993). Distribution of tudor protein in the Drosophila embryo suggests separation of functions based on site of localization. Development 119, 207-219. Bashkirov,V.I., Scherthan,H., Solinger,J.A., Buerstedde,J.M., and Heyer,W.D. (1997). A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J. Cell Biol. 136, 761-773. Bellen,H.J., Levis,R.W., Liao,G., He,Y., Carlson,J.W., Tsang,G., Evans-Holm,M., Hiesinger,P.R., Schulze,K.L., Rubin,G.M., Hoskins,R.A., and Spradling,A.C. (2004). The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761-781. Berleth,T., Burri,M., Thoma,G., Bopp,D., Richstein,S., Frigerio,G., Noll,M., and Nusslein-Volhard,C. (1988a). The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749-1756. Bessman,M.J., Frick,D.N., and O'Handley,S.F. (1996c). The MutT proteins or 'Nudix' hydrolases, a family of versatile, widely distributed, 'housecleaning' enzymes. J. Biol. Chem. 271, 25059-25062. Boeck,R., Tarun S Jr, Rieger,M., Deardorff,J.A., Muller-Auer,S., and Sachs,A.B. (1996). The yeast Pan2 protein is required for poly(A)-binding protein-stimulated poly(A)-nuclease activity. J. Biol. Chem. 271, 432-438. Bohrmann,J. and Biber,K. (1994). Cytoskeleton-dependent transport of cytoplasmic particles in previtellogenic to mid-vitellogenic ovarian follicles of Drosophila: time-lapse analysis using video-enhanced contrast microscopy. J. Cell Sci. 107 ( Pt 4), 849-858. Breitwieser,W., Markussen,F.H., Horstmann,H., and Ephrussi,A. (1996b). Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev. 10, 2179-2188. Brendza,R.P., Serbus,L.R., Duffy,J.B., and Saxton,W.M. (2000). A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122. Brown,C.E., Tarun,S.Z., Jr., Boeck,R., and Sachs,A.B. (1996). PAN3 encodes a subunit of the Pab1p-dependent poly(A) nuclease in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 5744-5753. Butler,J.S. (2002). The yin and yang of the exosome. Trends Cell Biol. 12, 90-96. Caceres,L. and Nilson,L.A. (2005). Production of gurken in the nurse cells is sufficient for axis determination in the Drosophila oocyte. Development 132, 2345-2353. Cali,B.M. and Anderson,P. (1998). mRNA surveillance mitigates genetic dominance in Caenorhabditis elegans. Mol. Gen. Genet. 260, 176-184. Cao,D. and Parker,R. (2003). Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113, 533-545. Carrera,P., Johnstone,O., Nakamura,A., Casanova,J., Jackle,H., and Lasko,P. (2000). VASA mediates translation through interaction with a Drosophila yIF2 homolog. Mol. Cell 5, 181-187. Chang,J.S., Tan,L., and Schedl,P. (1999b). The Drosophila CPEB homolog, orb, is required for oskar protein expression in oocytes. Dev. Biol. 215, 91-106. Chen,C.Y., Gherzi,R., Ong,S.E., Chan,E.L., Raijmakers,R., Pruijn,G.J., Stoecklin,G., Moroni,C., Mann,M., and Karin,M. (2001). AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464. Chou,T.B. and Perrimon,N. (1992c). Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643-653. Chou,T.B. and Perrimon,N. (1996b). The autosomal FLP-DFS technique for generating germline mosaics in Drosophila melanogaster. Genetics 144, 1673-1679. Clark,I., Giniger,E., Ruohola-Baker,H., Jan,L.Y., and Jan,Y.N. (1994b). Transient posterior localization of a kinesin fusion protein reflects anteroposterior polarity of the Drosophila oocyte. Curr. Biol. 4, 289-300. Cohen,L.S., Mikhli,C., Jiao,X., Kiledjian,M., Kunkel,G., and Davis,R.E. (2005). Dcp2 Decaps m2,2,7GpppN-capped RNAs, and its activity is sequence and context dependent. Mol. Cell Biol. 25, 8779-8791. Coller,J.M., Tucker,M., Sheth,U., Valencia-Sanchez,M.A., and Parker,R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 7, 1717-1727. Cougot,N., Babajko,S., and Seraphin,B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31-40. Couttet,P., Fromont-Racine,M., Steel,D., Pictet,R., and Grange,T. (1997). Messenger RNA deadenylylation precedes decapping in mammalian cells. Proc. Natl. Acad. Sci. U. S. A 94, 5628-5633. Crawford,E.K., Ensor,J.E., Kalvakolanu,I., and Hasday,J.D. (1997). The role of 3' poly(A) tail metabolism in tumor necrosis factor-alpha regulation. J. Biol. Chem. 272, 21120-21127. Daugeron,M.C., Mauxion,F., and Seraphin,B. (2001). The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res. 29, 2448-2455. Dean,J.L., Wait,R., Mahtani,K.R., Sully,G., Clark,A.R., and Saklatvala,J. (2001). The 3' untranslated region of tumor necrosis factor alpha mRNA is a target of the mRNA-stabilizing factor HuR. Mol. Cell Biol. 21, 721-730. Decker,C.J. and Parker,R. (1993). A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632-1643. Delattre,M., Tatout,C., and Coen,D. (2000). P-element transposition in Drosophila melanogaster: influence of size and arrangement in pairs. Mol. Gen. Genet. 263, 445-454. Duchek,P. and Rorth,P. (2001). Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science 291, 131-133. Dunckley,T. and Parker,R. (1999). The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18, 5411-5422. Ephrussi,A., Dickinson,L.K., and Lehmann,R. (1991). Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66, 37-50. Ephrussi,A. and Lehmann,R. (1992b). Induction of germ cell formation by oskar. Nature 358, 387-392. Espel,E., Garcia-Sanz,J.A., Aubert,V., Menoud,V., Sperisen,P., Fernandez,N., and Spertini,F. (1996). Transcriptional and translational control of TNF-alpha gene expression in human monocytes by major histocompatibility complex class II ligands. Eur. J. Immunol. 26, 2417-2424. Eystathioy,T., Jakymiw,A., Chan,E.K., Seraphin,B., Cougot,N., and Fritzler,M.J. (2003). The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA. 9, 1171-1173. Fan,X.C. and Steitz,J.A. (1998). Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17, 3448-3460. Fenger-Gron,M., Fillman,C., Norrild,B., and Lykke-Andersen,J. (2005a). Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905-915. Figueroa,A., Cuadrado,A., Fan,J., Atasoy,U., Muscat,G.E., Munoz-Canoves,P., Gorospe,M., and Munoz,A. (2003). Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol. Cell Biol. 23, 4991-5004. Fillman,C. and Lykke-Andersen,J. (2005). RNA decapping inside and outside of processing bodies. Curr. Opin. Cell Biol. 17, 326-331. Findley,S.D., Tamanaha,M., Clegg,N.J., and Ruohola-Baker,H. (2003a). Maelstrom, a Drosophila spindle-class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage. Development 130, 859-871. Fischer,N. and Weis,K. (2002). The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21, 2788-2797. Frischmeyer,P.A., van,H.A., O'Donnell,K., Guerrerio,A.L., Parker,R., and Dietz,H.C. (2002). An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258-2261. Gunkel,N., Yano,T., Markussen,F.H., Olsen,L.C., and Ephrussi,A. (1998). Localization-dependent translation requires a functional interaction between the 5' and 3' ends of oskar mRNA. Genes Dev. 12, 1652-1664. Hachet,O. and Ephrussi,A. (2004). Splicing of oskar RNA in the nucleus is coupled to its cytoplasmic localization. Nature 428, 959-963. Harris,A.N. and Macdonald,P.M. (2001). Aubergine encodes a Drosophila polar granule component required for pole cell formation and related to eIF2C. Development 128, 2823-2832. Hay,B., Ackerman,L., Barbel,S., Jan,L.Y., and Jan,Y.N. (1988b). Identification of a component of Drosophila polar granules. Development 103, 625-640. Hay,B., Jan,L.Y., and Jan,Y.N. (1988c). A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55, 577-587. Hay,B., Jan,L.Y., and Jan,Y.N. (1990). Localization of vasa, a component of Drosophila polar granules, in maternal-effect mutants that alter embryonic anteroposterior polarity. Development 109, 425-433. Higgs,D.C. and Colbert,J.T. (1994). Oat phytochrome A mRNA degradation appears to occur via two distinct pathways. Plant Cell 6, 1007-1019. Hsu,C.L. and Stevens,A. (1993). Yeast cells lacking 5'-->3' exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure. Mol. Cell Biol. 13, 4826-4835. Huynh,J.R. and St,J.D. (2004b). The origin of asymmetry: early polarisation of the Drosophila germline cyst and oocyte. Curr. Biol. 14, R438-R449. Ingelfinger,D., rndt-Jovin,D.J., Luhrmann,R., and Achsel,T. (2002a). The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA. 8, 1489-1501. Jordan,K.C., Clegg,N.J., Blasi,J.A., Morimoto,A.M., Sen,J., Stein,D., McNeill,H., Deng,W.M., Tworoger,M., and Ruohola-Baker,H. (2000). The homeobox gene mirror links EGF signalling to embryonic dorso-ventral axis formation through notch activation. Nat. Genet. 24, 429-433. Kedersha,N., Stoecklin,G., Ayodele,M., Yacono,P., Lykke-Andersen,J., Fitzler,M.J., Scheuner,D., Kaufman,R.J., Golan,D.E., and Anderson,P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871-884. Kim-Ha,J., Kerr,K., and Macdonald,P.M. (1995a). Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. Cell 81, 403-412. Kim-Ha,J., Smith,J.L., and Macdonald,P.M. (1991). oskar mRNA is localized to the posterior pole of the Drosophila oocyte. Cell 66, 23-35. Kofuji,S., Sakuno,T., Takahashi,S., Araki,Y., Doi,Y., Hoshino,S., and Katada,T. (2006). The decapping enzyme Dcp1 participates in translation termination through its interaction with the release factor eRF3 in budding yeast. Biochem. Biophys. Res. Commun. 344, 547-553. Koonin,E.V. (1993c). A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. Nucleic Acids Res. 21, 4847. Korner,C.G. and Wahle,E. (1997). Poly(A) tail shortening by a mammalian poly(A)-specific 3'-exoribonuclease. J. Biol. Chem. 272, 10448-10456. Korner,C.G., Wormington,M., Muckenthaler,M., Schneider,S., Dehlin,E., and Wahle,E. (1998). The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J. 17, 5427-5437. Kujubu,D.A., Norman,J.T., Herschman,H.R., and Fine,L.G. (1991). Primary response gene expression in renal hypertrophy and hyperplasia: evidence for different growth initiation processes. Am. J. Physiol 260, F823-F827. Lal,A., Mazan-Mamczarz,K., Kawai,T., Yang,X., Martindale,J.L., and Gorospe,M. (2004). Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J. 23, 3092-3102. Levy,N.S., Chung,S., Furneaux,H., and Levy,A.P. (1998). Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J. Biol. Chem. 273, 6417-6423. Lin,H. and Spradling,A.C. (1993). Germline stem cell division and egg chamber development in transplanted Drosophila germaria. Dev. Biol. 159, 140-152. Lin,J., Abeygunawardana,C., Frick,D.N., Bessman,M.J., and Mildvan,A.S. (1996a). The role of Glu 57 in the mechanism of the Escherichia coli MutT enzyme by mutagenesis and heteronuclear NMR. Biochemistry 35, 6715-6726. Lin,M.D., Fan,S.J., Hsu,W.S., and Chou,T.B. (2006c). Drosophila decapping protein 1, dDcp1, is a component of the oskar mRNP complex and directs its posterior localization in the oocyte. Dev. Cell 10, 601-613. Lukacsovich,T., Asztalos,Z., Awano,W., Baba,K., Kondo,S., Niwa,S., and Yamamoto,D. (2001). Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157, 727-742. Lykke-Andersen,J. (2002b). Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol. Cell Biol. 22, 8114-8121. Mahowald,A.P. (1968). Polar granules of Drosophila. II. Ultrastructural changes during early embryogenesis. J. Exp. Zool. 167, 237-261. Mahowald,A.P. and Hennen,S. (1971). Ultrastructure of the 'germ plasm' in eggs and embryos of Rana pipiens. Dev. Biol. 24, 37-53. Mancebo,R., Zhou,X., Shillinglaw,W., Henzel,W., and Macdonald,P.M. (2001). BSF binds specifically to the bicoid mRNA 3' untranslated region and contributes to stabilization of bicoid mRNA. Mol. Cell Biol. 21, 3462-3471. Markussen,F.H., Breitwieser,W., and Ephrussi,A. (1997). Efficient translation and phosphorylation of Oskar require Oskar protein and the RNA helicase Vasa. Cold Spring Harb. Symp. Quant. Biol. 62, 13-17. Markussen,F.H., Michon,A.M., Breitwieser,W., and Ephrussi,A. (1995b). Translational control of oskar generates short OSK, the isoform that induces pole plasma assembly. Development 121, 3723-3732. Micklem,D.R., Adams,J., Grunert,S., and St,J.D. (2000c). Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 19, 1366-1377. Mitchell,P. and Tollervey,D. (2000). mRNA stability in eukaryotes. Curr. Opin. Genet. Dev. 10, 193-198. Muhlrad,D., Decker,C.J., and Parker,R. (1995). Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell Biol. 15, 2145-2156. Muhlrad,D., Decker,C.J., and Parker,R. (1994). Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5'-->3' digestion of the transcript. Genes Dev. 8, 855-866. Muhlrad,D. and Parker,R. (1994). Premature translational termination triggers mRNA decapping. Nature 370, 578-581. Muhlrad,D. and Parker,R. (1992). Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev. 6, 2100-2111. Mukherjee,D., Gao,M., O'Connor,J.P., Raijmakers,R., Pruijn,G., Lutz,C.S., and Wilusz,J. (2002). The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 21, 165-174. Nakamura,A., Amikura,R., Hanyu,K., and Kobayashi,S. (2001). Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128, 3233-3242. Nakamura,A., Sato,K., and Hanyu-Nakamura,K. (2004b). Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell 6, 69-78. Pai,L.M., Barcelo,G., and Schupbach,T. (2000). D-cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103, 51-61. Parker,R. and Song,H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121-127. Peri,F. and Roth,S. (2000). Combined activities of Gurken and decapentaplegic specify dorsal chorion structures of the Drosophila egg. Development 127, 841-850. Perrimon,N. (1998). Creating mosaics in Drosophila. Int. J. Dev. Biol. 42, 243-247. Perrimon,N., Lanjuin,A., Arnold,C., and Noll,E. (1996b). Zygotic lethal mutations with maternal effect phenotypes in Drosophila melanogaster. II. Loci on the second and third chromosomes identified by P-element-induced mutations. Genetics 144, 1681-1692. Piccirillo,C., Khanna,R., and Kiledjian,M. (2003). Functional characterization of the mammalian mRNA decapping enzyme hDcp2. RNA. 9, 1138-1147. Rodgers,N.D., Wang,Z., and Kiledjian,M. (2002). Regulated alpha-globin mRNA decay is a cytoplasmic event proceeding through 3'-to-5' exosome-dependent decapping. RNA. 8, 1526-1537. Rongo,C., Broihier,H.T., Moore,L., Van,D.M., Forbes,A., and Lehmann,R. (1997). Germ plasm assembly and germ cell migration in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 62, 1-11. Rongo,C., Gavis,E.R., and Lehmann,R. (1995). Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development 121, 2737-2746. Rongo,C. and Lehmann,R. (1996). Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends Genet. 12, 102-109. Safrany,S.T., Caffrey,J.J., Yang,X., Bembenek,M.E., Moyer,M.B., Burkhart,W.A., and Shears,S.B. (1998). A novel context for the 'MutT' module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J. 17, 6599-6607. Saunders,C. and Cohen,R.S. (1999). The role of oocyte transcription, the 5'UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. Mol. Cell 3, 43-54. Schiavi,S.C., Wellington,C.L., Shyu,A.B., Chen,C.Y., Greenberg,M.E., and Belasco,J.G. (1994). Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J. Biol. Chem. 269, 3441-3448. Schnorrer,F., Bohmann,K., and Nusslein-Volhard,C. (2000). The molecular motor dynein is involved in targeting swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nat. Cell Biol. 2, 185-190. Sen,J., Goltz,J.S., Stevens,L., and Stein,D. (1998). Spatially restricted expression of pipe in the Drosophila egg chamber defines embryonic dorsal-ventral polarity. Cell 95, 471-481. Serbus,L.R., Cha,B.J., Theurkauf,W.E., and Saxton,W.M. (2005a). Dynein and the actin cytoskeleton control kinesin-driven cytoplasmic streaming in Drosophila oocytes. Development 132, 3743-3752. She,M., Decker,C.J., Sundramurthy,K., Liu,Y., Chen,N., Parker,R., and Song,H. (2004). Crystal structure of Dcp1p and its functional implications in mRNA decapping. Nat. Struct. Mol. Biol. 11, 249-256. Sheth,U. and Parker,R. (2003b). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808. Shyu,A.B., Belasco,J.G., and Greenberg,M.E. (1991). Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5, 221-231. Snee,M.J. and Macdonald,P.M. (2004a). Live imaging of nuage and polar granules: evidence against a precursor-product relationship and a novel role for Oskar in stabilization of polar granule components. J. Cell Sci. 117, 2109-2120. Spradling,A.C. (1993). Germline cysts: communes that work. Cell 72, 649-651. St,J.D., Beuchle,D., and Nusslein-Volhard,C. (1991). Staufen, a gene required to localize maternal RNAs in the Drosophila egg. Cell 66, 51-63. Styhler,S., Nakamura,A., and Lasko,P. (2002a). VASA localization requires the SPRY-domain and SOCS-box containing protein, GUSTAVUS. Dev. Cell 3, 865-876. Swan,A. and Suter,B. (1996). Role of Bicaudal-D in patterning the Drosophila egg chamber in mid-oogenesis. Development 122, 3577-3586. Theurkauf,W.E., Smiley,S., Wong,M.L., and Alberts,B.M. (1992b). Reorganization of the cytoskeleton during Drosophila oogenesis: implications for axis specification and intercellular transport. Development 115, 923-936. Tucker,M., Staples,R.R., Valencia-Sanchez,M.A., Muhlrad,D., and Parker,R. (2002). Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427-1436. Tucker,M., Valencia-Sanchez,M.A., Staples,R.R., Chen,J., Denis,C.L., and Parker,R. (2001). The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377-386. van,D.E., Cougot,N., Meyer,S., Babajko,S., Wahle,E., and Seraphin,B. (2002c). Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21, 6915-6924. van,H.A., Frischmeyer,P.A., Dietz,H.C., and Parker,R. (2002d). Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262-2264. van,H.A. and Parker,R. (1999). The exosome: a proteasome for RNA? Cell 99, 347-350. Vanzo,N.F. and Ephrussi,A. (2002). Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development 129, 3705-3714. Wang,Z., Jiao,X., Carr-Schmid,A., and Kiledjian,M. (2002d). The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. U. S. A 99, 12663-12668. Webster,P.J., Liang,L., Berg,C.A., Lasko,P., and Macdonald,P.M. (1997). Translational repressor bruno plays multiple roles in development and is widely conserved. Genes Dev. 11, 2510-2521. Wickens,M. and Goldstrohm,A. (2003). Molecular biology. A place to die, a place to sleep. Science 300, 753-755. Wilhelm,J.E., Mansfield,J., Hom-Booher,N., Wang,S., Turck,C.W., Hazelrigg,T., and Vale,R.D. (2000). Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J. Cell Biol. 148, 427-440. Yan,C.M., Dobie,K.W., Le,H.D., Konev,A.Y., and Karpen,G.H. (2002). Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster. Genetics 161, 217-229. Zettl,M. and Way,M. (2002). The WH1 and EVH1 domains of WASP and Ena/VASP family members bind distinct sequence motifs. Curr. Biol. 12, 1617-1622. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25580 | - |
| dc.description.abstract | 在酵母和人類的系統中,去頭蓋蛋白已被充分研究。研究發現Dcp1會和Dcp2 形成 heterodimer, 此酵素複合體具有去除訊息RNA頭蓋之活性。Dcp2是去頭蓋作用的催化中心, 且Dcp1被認為能增進其活性。另外, 越來越多的證據顯示許多蛋白質亦參與在此複合體中。Dcp1 和 Dcp2 的另一個特徵是他們會與 Xrn1 , Edc3 和 Dhh1 這些參與在訊息RNA降解路徑上的成員共同在細胞質內形成聚集點, 這個特殊的結構被稱作 P body ,且被認為是訊息 RNA 被進行降解的地點。
我們的之前的研究發現果蠅去頭蓋蛋白 1, dDcp1, 是 oskar mRNP的一個成員且和其定位於卵後端有關 (Lin et al., 2006)。 dDcp1突變時會造成果蠅胚胎腹節發育缺失, 此外, 其他 oskar mRNP 的成員的正確定位亦受到破壞, 如Exu , Yps 以及Orb. 這個發現揭示了訊息RNA在定位 ,轉錄, 轉譯和降解中間的緊密連接的可能性。 經過果蠅基因體比對, 我們找到了唯一可能的 dDcp2 基因, CG6169 。我們分析 dDcp2 突變對偶基因, BG1766, dDcp2de21,發現兩個突變對偶基因都造成前後及背腹的發育缺失。而這些特殊的性狀可能是 Osk, Stau 和 Vasa 蛋白沒能正確座落至卵後端所致。 另一個有趣的發現是當 dDcp2 基因被刪除時, 果蠅卵室內之護理細胞 (nurse cell)內, 可能的 P body 結構會發生明顯的放大和累積, 這也許是訊息RNA 降解路徑受阻的結果。 | zh_TW |
| dc.description.abstract | Decapping complex in yeast and human systems are well studied. It is reported that Dcp1 and Dcp2 form a heterodimer with decapping activity. Dcp2 is the catalytic center of decapping process and Dcp1 is believed to promote the decapping activity. And increasing lines of evidence show that many proteins may be associated in the decapping complex. Another distinct feature of Dcp1 and Dcp2 is their colocalization within cytoplasmic foci associated with other mRNA degradation components such as Xrn1, Edc3 and Dhh1. This specialized structure is called processing body (P body) which is referred to as the sites for mRNA degradation.
Our previous research uncovered Drosophila decapping protein 1,dDcp1, is a novel component of oskar mRNP complex and directs its posterior localization in the oocyte. (Lin et al., 2006b) dDcp1 mutant causes posterior group phenotype. And dDcp1 is also required for the proper posterior localization of other oskar mRNP complex component, such as Exu, Yps, and Orb. This discovery reveals the possibility of close linkage among transportation, transcription, translation and degradation. According to the Drosophila genome wide gene BLAST result, we uncovered the putative and unique dDcp2 gene, CG6169. We analyzed the dDcp2 mutant allele, BG1766, and dDcp2 null allele, dDcp2de21. Both mutant alleles cause anterior- posterior and dorsal-ventral patterning defect. And the distinct phenotype could be the consequence of mislocalization of Osk, Stau and Vasa proteins. The other interesting finding is that deletion of dDcp2 gene causes the enlargement and accumulation of P body-like structure, which may be the result of the mRNA decay pathway deficiency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:19:41Z (GMT). No. of bitstreams: 1 ntu-95-R93b43020-1.pdf: 2658300 bytes, checksum: d1904024559fa249e8f331820692dbbd (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要 1
Abstract 2 Table of Content 3 List of abbreviations 9 List of primers 10 Introduction 11 Drosophila oogenesis 11 Microtubule network polarity during oogenesis 12 Anterior- posterior axis determination 13 bicoid mRNA localization and expression 15 Regulation of oskar mRNA localization and expression 15 oskar mRNA localization 15 oskar mRNA expression 17 Vasa localization 18 Dorsal-ventral axis determination 10 Transcript Stability During oogenesis 21 mRNA turnover pathways 22 General mRNA decay pathways 22 Specialized mRNA decay pathways 24 Present study of Dcp1 and Dcp2 25 dDcp1 is a novel posterior group gene 27 The Drosophila decapping protein 2, dDcp2 28 About the thesis 29 Material and methods 30 Drosophila stocks 30 FLP-DFS technique 30 Local transposition screen for dDcp2 mutant allele 31 Creation of dDcp2 null allele by imprecise excision 32 Germ-line clone generation 32 Cuticle preparation 32 Immunofluorescence for ovary 33 Single fly PCR 34 Inverse PCR 34 Western blot analysis 35 Repetitive epitode cloning 35 Protein expression and purification 36 Protein expression 36 Protein purification by 6xHis binding resin 37 RT-PCR 38 Results 39 CG6169 is the unique Dcp2 homoloque in Drosophila 40 dDcp2 mutant allele, BG1766, cause posterior phenotype and interfere Dorsal-ventral patterning 41 Introduction of BG1766 41 Phenotypes of BG1766 allele 42 P element local tranposition screen for hypomorph dDcp2 allele 42 Sequence analysis of dDcp2 alleles 44 BG1766 44 BG325 44 BG315 45 BG21 45 Creation the dDcp2 null allele, dDcp2de21 46 Thestrategy 46 Procedures of the excision screen 46 The result of the BG21 deletion screen 47 dDcp2de21 chromosome sequence analysis 47 The deletion region of the deletion lines 47 The residual fragment between the break points 48 dDcp2de21 is a dDcp2 null allele 48 Lethal phase of dDcp2 mutant organism 49 dDcp2 null allele, dDcp2de21 also cause the abnormal A-P and D-V patterning 50 A-P patterning defects 50 D-V patterning defects 51 Other unusual phenomenon observed in dDcp2de21 germ line clone 51 dDcp2de21 allele specifically disrupts dDcp2 gene function 51 dDcp1 and dDcp2 mutant alleles share similar embryonic phenotype 52 dDcp2 mutant alleles cause mislocalization of maternal product 53 Osk 53 Stau 53 Vasa 54 Deletion of dDcp2 cause the accumulation and enlargement of putative P body structures 55 Discussion 56 dDcp2de21 allele is a dDcp2 null allele and impairs dDcp2 gene function without disrupting the neighboring diablo gene function 56 dDcp2 gene disruption screen 57 The efficiency of dual P-element excision 57 Application of BG325 allele 58 The Dumping defect in dDcp2de21 GLC egg chambers 59 Posterior phenotype presented in dDcp2 mutant may independent of its decapping function 60 dDcp2 may involved in actin organization 61 dDcp2 mutant cause A-P and D-V patterning defect and mislocalization of maternalproducts 62 dDcp2de21 does not affect Vasa-containing structures in early stage egg chambers 63 dDcp1-containing structures are accumulated and enlarged in dDcp2de21 GLC egg chambers 64 The complexity of the distribution of distinct foci in nurse cells 65 The hypothesis 67 List of Tables Table 1. The ratio of different posterior phenotype of embryos derived from BG1766 and dDcp2de21 germ line clone females Table 2. The ratio of different dorsal appendage fusion phenotype of embryos derived from BG1766 and dDcp2de21 germ line clone females Table 3. Osk, Vas protein localization in the dDcp2de21 GLC oocytes Table 4. Stau protein localization in the dDcp2de21 GLC oocytes List of Figures Fig.1 Asymmetric distribution of maternal determinants for axes formation Fig.2 mRNA decay pathway Fig.3 The major concept of DFS-FLP technique for germ line clone generation Fig. 4 The alternative spicing of dDcp2 isoforms Fig.5 Insertion sites of dDcp2 alleles, BG1766, BG325, BG315 and BG21 Fig.6 The mechanism of mutagenesis by pGT1 insertion line Fig.7 The RT-PCR products for aberrant dDcp2 transcripts in BG1766 insertion Line Fig.8 Schemes of BG1766 local transposition screen and BG21 imprecise excision screen Fig.9 Entire dDcp2 coding sequence is deleted in dDcp2de21 allele Fig.10 The RT-PCR products for dDcp2 transcripts Fig.11 Anti-dDcp2 antibody immunostaining of WT and dDcp2de21 GLC ovaries Fig.12 The map shows two dDcp2 isoforms and two genome fragments for complementary tests Fig.13 The RT-PCR products for diablo transcript Fig.14 Cuticle preparation of unhatched embryos Fig.15 Dorsal appendage fusion phenotype and dumping defect is also found in dDcp1 mutant Fig. 16 dDcp2de21 mutant affects the localization of Osk in stage 8-10 egg chamber Fig. 17 The localization of Stau protein on dDcp2de21 mutant background Fig. 18 The Vasa protein expression pattern is disrupted when dDcp2 is mutated Fig.19 The Vasa antibody staining for dDcp2de21 early stage egg chambers are resemble to WT situation Fig. 20 Abnormal actin particles exist in dDcp2de21 GLC ooctytes Fig.21 Abnormal P body-like structures are accumulate when dDcp2 is mutated Fig.22 The possible indirect effects of dDcp1 and dDcp2 in A-P pattering Fig. 23 The model: aberrant P body disrupt osk mRNP assembly and transposition Acknowledgments 93 Reference 94 | |
| dc.language.iso | en | |
| dc.subject | 果蠅卵發育 | zh_TW |
| dc.subject | 果蠅去頭蓋蛋白 | zh_TW |
| dc.subject | Drosophila oogenesis | en |
| dc.subject | dDcp2 | en |
| dc.title | 果蠅去頭蓋蛋白質2 對果蠅卵發育過程中軸向之調控分析 | zh_TW |
| dc.title | Analysis of Drosophila decapping protein 2, dDcp2, in axis determination during Drosophila oogenesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖國楨(Gwo-Jen Liaw),蘇銘燦(Ming-Tsan Su),李心予(Hsin-Yu Lee) | |
| dc.subject.keyword | 果蠅去頭蓋蛋白,果蠅卵發育, | zh_TW |
| dc.subject.keyword | dDcp2,Drosophila oogenesis, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2006-10-18 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
