Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2555
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林啟萬(Chii-Wann LIN)
dc.contributor.authorTzu-Heng WUen
dc.contributor.author吳子珩zh_TW
dc.date.accessioned2021-05-13T06:41:59Z-
dc.date.available2018-06-12
dc.date.available2021-05-13T06:41:59Z-
dc.date.copyright2017-06-12
dc.date.issued2017
dc.date.submitted2017-05-11
dc.identifier.citation1. S. Verma, A. Robinson and P. Dutta, presented in part at the Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, Toronto, Ontario, Canada, 2012.
2. A. Lopez Gerardo, M. C. Estevez, M. Soler and M. Lechuga Laura, Nanophotonics, 2016, 6, 123.
3. Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, R. Caire, D. Tseng and A. Ozcan, ACS Nano, 2014, 8, 1121-1129.
4. L. Jiang, M. Mancuso, Z. Lu, G. Akar, E. Cesarman and D. Erickson, Scientific Reports, 2014, 4, 4137.
5. OECD, Health care expenditure per GDP, http://stats.oecd.org/Index.aspx?DataSetCode=SHA).
6. C. L. Petersen, T. P. Chen, J. M. Ansermino and G. A. Dumont, Sensors, 2013, 13, 16882-16893.
7. P. Preechaburana, M. C. Gonzalez, A. Suska and D. Filippini, Angewandte Chemie, 2012, 51, 11585-11588.
8. L. Shen, J. A. Hagen and I. Papautsky, Lab On a Chip, 2012, 12, 4240-4243.
9. A. I. Barbosa, P. Gehlot, K. Sidapra, A. D. Edwards and N. M. Reis, Biosensors and Bioelectronics, 2015, 70, 5-14.
10. S. Agarwal, A. E. LeFevre, J. Lee, K. L’Engle, G. Mehl, C. Sinha and A. Labrique, BMJ, 2016, 352.
11. S. Vashist, E. Schneider and J. Luong, Diagnostics, 2014, 4, 104-128.
12. H. Li and L. Rothberg, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14036-14039.
13. S. R. Steinhubl, E. D. Muse and E. J. Topol, Science translational medicine, 2015, 7, 283rv283-283rv283.
14. E. A. Tyburski, S. E. Gillespie, W. A. Stoy, R. G. Mannino, A. J. Weiss, A. F. Siu, R. H. Bulloch, K. Thota, A. Cardenas, W. Session, H. J. Khoury, x, S. Connor, xE, S. T. Bunting, J. Boudreaux, C. R. Forest, M. Gaddh, T. Leong, L. A. Lyon and W. A. Lam, The Journal of Clinical Investigation, 2014, 124, 4387-4394.
15. C.-C. Chang, C.-P. Chen, C.-H. Lee, C.-Y. Chen and C.-W. Lin, Chemical Communications, 2014, 50, 14443-14446.
16. C.-C. Chang, S. Lin, C.-H. Lee, T.-L. Chuang, P.-R. Hsueh, H.-C. Lai and C.-W. Lin, Biosensors and Bioelectronics, 2012, 37, 68-74.
17. Y.-S. Kuo, Proceedings of the First ACM Symposium on Computing for Development
Article, 2010 24.
18. J. I. Hong and B.-Y. Chang, Lab on a Chip, 2014, 14, 1725-1732.
19. J. F. Masson, L. Obando, S. Beaudoin and K. Booksh, Talanta, 2004, 62, 865-870.
20. T.-L. Chuang, C.-C. Chang, Y. Chu-Su, S.-C. Wei, X.-h. Zhao, P.-R. Hsueh and C.-W. Lin, Lab on a Chip, 2014, 14, 2968-2977.
21. S. K. Vashist, T. van Oordt, E. M. Schneider, R. Zengerle, F. von Stetten and J. H. T. Luong, Biosensors and Bioelectronics, 2015, 67, 248-255.
22. J. R. Askim and K. S. Suslick, Analytical Chemistry, 2015, 87, 7810-7816.
23. G. Marriott, S. Mao, T. Sakata, J. Ran, D. K. Jackson, C. Petchprayoon, T. J. Gomez, E. Warp, O. Tulyathan, H. L. Aaron, E. Y. Isacoff and Y. Yan, Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17789-17794.
24. Y. H. Huang, H. P. Ho, S. Y. Wu and S. K. Kong, Advances in Optical Technologies, 2012, 2012, 12.
25. C.-C. Chang, S.-C. Wei, T.-H. Wu, C.-H. Lee and C.-W. Lin, Biosensors and Bioelectronics, 2013, 42, 119-123.
26. L. J. Steven, Physics in Medicine and Biology, 2013, 58, R37.
27. E. Stern, A. Vacic, N. K. Rajan, J. M. Criscione, J. Park, B. R. Ilic, D. J. Mooney, M. A. Reed and T. M. Fahmy, Nature Nanotechnology, 2010, 5, 138-142.
28. S.-C. Hsieh, C.-C. Chang, C.-C. Lu, C.-F. Wei, C.-S. Lin, H.-C. Lai and C.-W. Lin, Nanoscale Research Letters, 2012, 7, 180-180.
29. M. Pawula, Z. Altintas and I. E. Tothill, Talanta, 2016, 146, 823-830.
30. Y. H. Huang, H. P. Ho, S. K. Kong and A. V. Kabashin, Annalen der Physik, 2012, 524, 637-662.
31. A. J. T. Richard B M Schasfoort, Handbook of Surface Plasmon Resonance, RSC, 2008.
32. B. Sepulveda, L. G. Carrascosa, D. Regatos, M. A. Otte and D. Farina, Proceedings of SPIE 7397, Biosensing II, 2009, 73970Y
33. P. P. Markowicz, W. C. Law, A. Baev, P. N. Prasad, S. Patskovsky and A. Kabashin, Opt. Express, 2007, 15, 1745-1754.
34. C.-M. Wu, Z.-C. Jian, S.-F. Joe and L.-B. Chang, Sensors and Actuators B: Chemical, 2003, 92, 133-136.
35. Y. Wu, H. P. Ho, C. L. Wong, S. K. Kong and L. Chinlon, Sensors Journal, IEEE, 2007, 7, 70-73.
36. S.-P. Ng, C.-M. L. Wu, S.-Y. Wu, H.-P. Ho and S. K. Kong, Biosensors and Bioelectronics, 2010, 26, 1593-1598.
37. A. V. Kabashin and P. I. Nikitin, Optics Communications, 1998, 150, 5-8.
38. T. M. Chinowsky, J. G. Quinn, D. U. Bartholomew, R. Kaiser and J. L. Elkind, Sensors and Actuators B: Chemical, 2003, 91, 266-274.
39. W. J. Bates, Proceedings of Physical Society, 1947, 59, 6.
40. A. Al Mohtar, J. Vaillant, Z. Sedaghat, M. Kazan, L. Joly, C. Stoeffler, J. Cousin, A. Khoury and A. Bruyant, Opt. Express, 2014, 22, 22232-22245.
41. S. Ekgasit, C. Thammacharoen, F. Yu and W. Knoll, Applied Spectroscopy, 2005, 59, 661-667.
42. H. Jo, H. Gu, W. Jeon, H. Youn, J. Her, S.-K. Kim, J. Lee, J. H. Shin and C. Ban, Analytical Chemistry, 2015, 87, 9869-9875.
43. M. Darmostuk, S. Rimpelova, H. Gbelcova and T. Ruml, Biotechnology Advances, 2015, 33, 1141-1161.
44. P. O. Collinson, F. G. Boa and D. C. Gaze, Annals of Clinical Biochemistry, 2001, 38, 423-449.
45. K. A. Peterlinz, R. M. Georgiadis, T. M. Herne and M. J. Tarlov, Journal of the American Chemical Society, 1997, 119, 3401-3402.
46. A. W. Peterson, R. J. Heaton and R. M. Georgiadis, Nucleic Acids Research, 2001, 29, 5163-5168.
47. R. M. Dirks and N. A. Pierce, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 15275-15278.
48. S. K. Vashist, M. Saraswat and H. Holthšfer, Procedia Chemistry, 2012, 6, 184-193.
49. J. A. Lofgren, S. Dhandapani, J. J. Pennucci, C. M. Abbott, D. T. Mytych, A. Kaliyaperumal, S. J. Swanson and M. C. Mullenix, The Journal of Immunology, 2007, 178, 7467-7472.
50. C.-Y. Yang, E. Brooks, Y. Li, P. Denny, C.-M. Ho, F. Qi, W. Shi, L. Wolinsky, B. Wu, D. T. W. Wong and C. D. Montemagno, Lab on a Chip, 2005, 5, 1017-1023.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2555-
dc.description.abstract近年來,人口快速增長伴隨著社會老齡化,為醫療照護系統帶來日漸沉重之負擔。因應此社會現象,居家定點照護成為許多學術研究以及新創產業的熱門方向。透過適當的設計,結合消費性電子元件強大的軟硬體,以往僅能在實驗室運作的生物感測器將可以被引入居家生活中提供即時而精確的醫療診斷。
 本論文旨在探索如何運用智慧型手機作為整合之核心平台,建構可攜式表面電漿共振生物感測器實驗室晶片系統。於論文第一部分,利用單股核糖核相對於雙股核糖核酸更能夠有效地避免鹽類誘發之金奈米粒子聚集特性,我們於智慧型手機上建構了一個核糖核酸檢測裝置。在此一平台,智慧型手機扮演了幾個重要的角色。首先,透過3.5釐米音訊孔與自製電路之整合,智慧型手機可以驅動650奈米之射源,並透過輸入電極接收雷射光訊號,來進行金奈米粒子吸收度量測。透過軟體鎖相放大器來解調射源之震盪訊號,百分之八十以上的環境雜訊可以被排除,使該平台成為一個具有-63 dB優良訊躁比的顯色儀。最後,所有資訊可以直接在自製之應用程式上被顯示、分析,不需要任何額外裝置。透過我們提出的平台,我們能夠在智慧型手機上,於十五分鐘內解析最低0.77 nM的核糖核酸樣品,甚至優於某些商用桌面型可見光-紫外光光譜儀在單一波長的解析極限。
 接續第一部分的實驗,我們提出了一種全新的相位式表面電漿共振生物感測器。許多文獻指出,相位式表面電漿感測器比強度式更加的靈敏(約100倍)。然而,因為需要相位震盪器、易受到同徑雜訊影響以及需要過多光學組件等諸多議題的限制,相位式表面電漿感測器之商業化應用至今仍未成功,遑論手持式應用。然而,相位式表面電漿感測器的額外靈敏度,在定點照護中具有相當重要的價值。為此,本論文提出了剪干涉式表面電漿共振生物感測器。剪干涉式表面電漿共振生物感測器,具最小化同徑干擾效應、減少光學零組件需求、以及透過電流調變作為相位調等優點。為了處理強度與相位同頻率震盪的干涉訊號,本論文提出一種新的相位擷取方式。此方法,改良自泛用式鎖向放大器,可以在相位震盪深度(Δϕa)為3.83且已知雷射波長-電流調變係數(S)等特殊條件下,解調出相位資訊。在電漿層膜厚為47奈米的情況下,剪干涉式表面電漿共振生物感測器可以達到 1.26x10-6 RIU之最低解析度,約比強度式靈敏20倍。透過適體修飾以及心肌蛋白之檢測,本論文也初步展示剪干涉式表面電漿共振生物感測器之應用潛力,並提出一套結合嵌入式系統以及消費性電子元件之應用架構。
zh_TW
dc.description.abstractThis thesis is dedicated to integrate consumer electronics devices (CED) with advanced plasmonic sensors into Lab-On-a-Chip system for point-of-care application, with a main focus on design of compact plasmonic sensor.
In the first part of the thesis, a short strand DNA biosensor combining single-wavelength colorimetry and digital Lock-in Amplifier within a smartphone is proposed. The principle of the detection is that single strand DNA tends to protect gold nano-particle from salt induced aggregation, as compare to double strand DNA. The salt induced aggregation is then detected from absorbance at 650 nm wavelength. Using 3.5 mm audio channel to integrate laser driver and photo-detector, together with a tailor-made software lock-in amplifier (sLIA), we have achieved a 15 mer DNA detection down to 0.77 nM within 15 minutes on smartphone. Due to sLIA, the measurement noise-to-signal ratio is greatly reduce to -63 dB, which lead to four times smaller limit-of-detection as compared to a desktop UV-Vis spectrometer.
Encouraged by the results of the first part, we proceed to explore the possibility of smartphone based interferometric plasmonic sensor. Conventionally, phase sensitive Surface Plasmon Resonance (SPR) biosensor is not viable outside laboratory setting due to cost and performance consideration. Therefore, to pursue portable SPR application with high sensitivity, in the second part of the thesis, a Shearing Interferometer based Surface Plasmon Resonance (SiSPR) biosensor, which has not been reported elsewhere, is proposed. The SiSPR chip uses shearing interferometer without the need of extra optical parts. This design together with differential interferometry greatly reduce noises. To avoid the use of costly phase modulator, a current induced sinusoidal wavelength modulation is applied with a novel phase extraction method. We demonstrate that the detection limit of the SiSPR, at 47 nm of plasmonic layer thickness is down to 1.26x10-6 RIU, about 20 times better than amplitude sensing. From our data, we estimate that SiSPR can be more sensitive if film thickness is near 49 nm. We have also demonstrated preliminary results on protein sensing using aptameric probe. The further integration of SiSPR with CED and future perspectives are incorporated in the end of the thesis.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:41:59Z (GMT). No. of bitstreams: 1
ntu-106-D02945006-1.pdf: 8422573 bytes, checksum: 6b6986264344c6d6cf06ea96c713a264 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsTable of Content
Acknowledgement i
摘要 ii
Abstract iii
Chapter 1. General introduction 1
Part 1. DNA biosensor combining single-wavelength colorimetry and digital Lock-in Amplifier within a Smartphone 8
Chapter 2. Introduction to smartphone based colorimetry 9
Chapter 3. Literature review on smartphone based diagnostic tool 12
Chapter 4. Material and methods 18
Section 4-1. Theoretical background of Lock-in Amplifier 18
Section 4-2. Digital LIA algorithm 19
Section 4-3. SBLIA-AuNP colorimetry system 20
Section 4-4. AuNP preparation 22
Section 4-5. Sample preparation for target DNA detection 23
Section 4-6. Converting SBLIA-AuNP colorimetry measurement data into absorbance unit (AU) for comparison 24
Chapter 5. Results and Discussion 26
Section 5-1. Characterizing audio channel 26
Section 5-2. SBLIA performance and working parameters 28
Section 5-3. Comparison between SBLIA approach and SCB 30
Section 5-4. DNA sensing by SBLIA-AuNP colorimetry 31
Section 5-5. Conclusion 36
Part 2. “Shearing Interferometer based 38
Surface Plasmon Resonance Biosensor (SiSPR)” 38
Chapter 6. Introduction on SiSPR 39
Chapter 7. Literature Review on phase interrogated SPR 46
Chapter 8. Methodology 57
Section 8-1. Working principle of SiSPR 57
Section 8-2. Wavefront analysis on SiSPR 59
Section 8-3. SiSPR interferogram and phase retrieval method 64
Section 8-3-1. SPM interferogram without AM 66
Section 8-3-2. Phase extraction in SPM interferogram with AM 70
Section 8-4. SiSPR Laboratory prototype 75
Section 8-5. Fabrication of SiSPR chip 77
Chapter 9. Results and discussion 83
Section 9-1. Numerical Simulation 83
Section 9-2. Determining “S” of VSCEL and “∆ϕa” of the SPM 85
Section 9-3. Imaging of beam profile of SiSPR 89
Section 9-4. SiSPR sensing performance: 92
Section 9-5. Preliminary bio-sensing Data 102
Section 9-6. Summary and conclusion on SiSPR 108
Chapter 10 General conclusion and future perspectives 111
Appendix 116
Section A1. List of mathematical relations 117
Section A2. Detail in phase extraction 118
Section A3. Matlab code for simulation of SPR performances 121
Section A4. Design of the SiSPR portable prototype 126
Section A4. GLIA algorithm on Arduino 127
Section A5. Android algorithm 129
Appendix A6.Scientific production on the project 133
Appendix A7.Extended French Abstract 135
References 164
dc.language.isoen
dc.subject表面電漿共振生物感測器zh_TW
dc.subject實驗室晶片系統zh_TW
dc.subject核糖核酸zh_TW
dc.subject相位檢測zh_TW
dc.subject鎖相放大zh_TW
dc.subject消費型電子元件zh_TW
dc.subjectDNA aptameren
dc.subjectPhase detectionen
dc.subjectLock-In Amplifieren
dc.subjectSurface Plasmon Resonanceen
dc.subjectLab-On-a-Chipen
dc.subjectConsumer Electronic Deviceen
dc.title智慧電漿子實驗室晶片系統之核酸感測研發zh_TW
dc.titleSmart Plasmonic Lab-on-a-Chip System for DNA based Biosensingen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.coadvisor歐赫里昂 布雍(Aureline BRUYANT),林致廷(Chih-Ting LIN)
dc.contributor.oralexamcommittee黃念祖(Nien-Tsu Huang),施文彬(Wen-Pin Shih)
dc.subject.keyword表面電漿共振生物感測器,消費型電子元件,鎖相放大,相位檢測,實驗室晶片系統,核糖核酸,zh_TW
dc.subject.keywordLab-On-a-Chip,DNA aptamer,Consumer Electronic Device,Surface Plasmon Resonance,Lock-In Amplifier,Phase detection,en
dc.relation.page166
dc.identifier.doi10.6342/NTU201700804
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-05-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf8.23 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved