Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25547
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖秀娟(Vivian Hsiu-Chuan Liao)
dc.contributor.authorChan-Wei Yuen
dc.contributor.author游展維zh_TW
dc.date.accessioned2021-06-08T06:18:10Z-
dc.date.copyright2007-02-02
dc.date.issued2007
dc.date.submitted2007-01-20
dc.identifier.citationAbernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C, and Waalkes M. (1999). Arsenic: Health effects, mechanisms of actions, and research issues. Environ Health Perspect 107, 593–597.
An JH, and Blackwell TK. (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 17, 1882–1893.
An JH, Vranas K, Lucke M, lnoue H, Hisamoto N, and Matsumoto K. (2005) Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3. PNAS 102, 16275-80.
Asada K, and Takahashi M. (1987) Production and scavenging of active oxygen in photosynthesis. Kyle D J, Bowler C B, Arntzen C B. Photoinhibition. Armsterdam: Elsevier Science Publisher B V. 227-288.
Barchowsky A, Klei LR, Dudek EJ, Swartz HM. and James PE. (1999a) Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic. Biol. Med. 27, 1405–1412.
Barchowsky A, Roussel RR, Klei LR, James PE, Ganju N, Smith KR and Dudek EJ. (1999b) Low levels of arsenic trioxide stimulate proliferative signals in primary vascular cells without activating stress effector pathways. Toxicol. Appl. Pharmacol. 159, 65–75.
Brenner S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71–94.
Cadenas E. (1989) Biochemistry of oxygen toxicity. Annu. Rev. Biochem 58, 79–110
Cavigelli M, Li WW, Lin AN, Su B, Yoshioka K, and Karin M, (1996) The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J. 15, 6269–6279.
Chen F, Lu Y, Zhang Z, Vallyathan V, Ding M, Castranova V and Shi X. (2001) Opposite effect of NF-kappa B and c-Jun N-terminal kinase on p53-independent GADD45 induction by arsenite. J. Biol. Chem. 276, 11414–11419.
Dean RT, Gieseg S, and Davies MJ. (1993) Reactive species and their accumulation on radical-damaged proteins. Trends Biochem. Sci 18, 437–41
Del Razo LM., Styblo M., Cullen WR, and Thomas DJ. (2001). Determination of trivalent methylated arsenicals in biological matrices. Toxicol Appl Pharmacol 174, 282-293.
Delnomdedieu M, Basti MM, Otvos JO, and Thomas DJ. (1993) Transfer of arsenite from glutathione to dithiol: a model of interaction. Chem Res Toxicol 6, 598–602.
Delnomdedieu M, Basti MM, Styblo M, Otvos JD, and Thomas DJ. (1994) Complexation of arsenic species in rabbit erythrocytes. Chem Res Toxicol 7, 621–627.
Duke RC, Ojcius DM, and Young JDE. (1996) Cell suicide in health and disease. Scientific American, 80-87.
Engel RR, Hopenhayn-Rich C, and Receveur O, et al. (1994) Vascular effects of chronic arsenic exposure. Epidemiol Rev. 16, 184–209.
Fang, YZ, Yang S, and Wu G.. (2002) Free radicals, antioxidants, and nutrition. Nutrition 18, 872-879.
Fridovich I. (1998) Oxygen toxicity: a radical explanation. J. Exp. Biol. 201, 1203–9
Garcia-Chavez E, Santamaria A, Diaz-Barriga F, Mandeville P, Juarez BI, and Jimenez-Capdeville ME. (2003) Arsenite-induced formation of hydroxyl radical in the striatum of awake rats. Brain Res 20, 82-9.
Gerschman R, Gilbert DL, Nye SW, Dwyer P, and Fenn WO. (1954) Oxygen poisoning and X-irradiation: a mechanism in common. Science 119, 4562–70
Green DR, and Reed JC. (1998) Mitochondria and apoptosis. Science 281,1309–12.
Halliwell B, and Gutteridge JMC. (1999) Free Radicals in Biology and Medicine. New York: Oxford Univ. Press
Hayes JD, and McLellan LI. (1999) Glutathione and glutathionedependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 31, 273–300.
Hirata M, Tanaka A, Hisanaga A, and Ishinishi N. (1990) Effects of glutathione depletion on the acute nephrotoxic potential of arsenite and on arsenic metabolism in hamsters. Toxicol Appl Pharmacol 106, 469–481.
Hope IA. (1999) C. elegans: A Practical Approach. Oxford: Oxford University Press, UK: 62–63
Huang C, Ma WY, Li J and Dong Z. (1999) Arsenic induces apoptosis through a c-Jun NH2-terminal kinase-dependent, p53-independent pathway. Cancer Res. 59, 3053–3058.
Huang H, Huang CF, Wu DR, Jinn CM, and Jan KY. (1993) Glutathione as a cellular defense against arsenite toxicity in cultured Chinese hamster ovary cells. Toxicology 79, 195–204.
Imlay JA. (2003) Pathways of oxidative damage. Annu. Rev. Microbiol. 57, 395–418
Imlay JA, and Linn S. (1988) DNA damage and oxygen radical toxicity. Science 240, 1302–9.
Iwama K, Nakajo S, Aiuchi T, and Nakaya K. (2001) Apoptosis induced by arsenic trioxide in leukemia U937 cells is dependent on activation of p38, inactivation of ERK and the Ca2+-dependent production of superoxide. Inter J Cancer 92, 518–526.
Jefferies H, Coster J, Khalil A, Bot J, McCauley RD, and Hall JC. (2003) Glutathione. ANZ J Surg. 73(7), 517-22.
Kamath, RS, Martinez-Campos M., Zipperlen P, Fraser AG., and Ahringer J. (2000) Genome Biol. 2, research0002.1-0002.10
Lerman SA., Clarkson TW, and Gerson RJ. (1983) Arsenic uptake and metabolism by liver cells is dependent on arsenic oxidation state. Chem Biol Interact 45, 401–406.
Lesser MP¬. (2006) Oxidative stress in marine environments: Biochemistry and Physiological Ecology. Annual Review of Physiology 68, 253-278
Liu SX, Athar M, Lippai I, Waldren C, and Hei TK. (2001) Induction of oxyradicals by arsenic: Implication for mechanism of genotoxicity. Proc Natl Acad Sci USA 98, 1643–1648.
Lomaestro BM, and Malone M. (1995) Glutathione in health and disease: Pharmacotherapeutic issues. Ann Pharmacother 29, 1263-73
Lu XY, Gross RE, Bagchi S, and Rubin CS. (1990) J. Biol. Chem. 265, 3293-3303
Lynn S, Gurr JR, Lai HT, and Jan KY (2000) NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86: 514–519,
Marnett LJ. (2000) Oxyradicals and DNA damage, Carcinogenesis 21, 361–370.
Meister A. (1991) Glutathione deficiency produced by inhibition of its synthesis, and its reversal; Applications in research and therapy. Pharmacology & Therapeutics 51, 155-194
Meister A, and Anderson ME. (1983). Glutathione. Annu Rev Biochem. 52, 711-760.
NRC. (1999). Arsenic in Drinking Water. Washington DC, National Research Council.
Ochi T. (1997) Arsenic compound-induced increases in glutathione levels in cultured Chinese hamster V79 cells and mechanisms associated with changes in gamma-glutamylcysteine synthetase activity, cystine uptake and utilization of cysteine. Arch Toxicol 71, 730–740.
Owen WG. (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radical & Medicine 27, 922-935.
Peraza MA, Cromey DW, Carolus B, Carter DE, and Gandolfi AJ. (2006) Morphological and functional alterations in human proximal tubular cell line induced by low level inorganic arsenic: evidence for targeting of mitochondria and initiated apoptosis. J Appl Toxicol 13,
Poli G, Leonarduzzi G, Biasi F, and Chiarpotto E. (2004) Oxidative stress and cell signaling. Curr Me. Chem. 11, 1163–1182.
Pompella A, Visvikis A, Paolicchi A, De Tata V, and Casini AF. (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66, 1499–1503.
Radabaugh TR, and Aposhian HV. (2000) Enzymatic reduction of arsenic compounds in mammalian systems: reduction of arsenate to arsenite by human liver arsenate reductase. Chem Res Toxicol 13, 26–30.
Richman PG, and Meister A. (1975) Regulation of gamma-glutamylcysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem 250, 1422–1426.
Schrek R, and Baeuerle PA. (1991) A role for oxygen radicals as second messengers. Trends Cell Biol. 1:39–42
Scott N, Hatlelid KM, MacKenzie NE, and Carter DE. (1993) Reaction of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6, 102–106.
Shi H, Shi X, and Liu KJ. (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem. 255(1-2), 67-78.
Simeonova PP, and Luster MI. (2004) Arsenic and atherosclerosis. Toxicol Appl Pharmacol 198, 444–9.
Shimizu M, Hochadel JF, Fulmer BA, and Waalkes MP. (1998) Effect of glutathione depletion and metallothionein gene expression on arsenic-induced cytotoxicity and c-myc expression in vitro. Toxicol Sci 45, 204–211.
Sung Gu Han, Vince Castranova and Val vallyathan. (2005) Heat shock protein 70 as an indicator of early lung injury caused by exposure to arsenic. Molecular and Cellular Biochemisty 277, 154-164
Studier FW, and Moffatt BA. (1986) Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113-130
Storz. (2005) Reactive oxygen species in tumor progression, Front. Biosci. 10, 1881–1896.
Tchounwou PB, Wilson BA, and Ishaque A. (1999). Important considerations in the development of public health advisories for arsenic and arsenic containing compounds in drinking water. Rev Environ Health 14, 1–19.
Timmons L, and Fire A. (1998) Specific interference by ingested dsRNA. Nature 395, 854
Tsou TC, Yeh SC, Tsai FY, and Chang LW. (2004) The Protective Role of Intracellular GSH Status in the Arsenite-Induced Vascular Endothelial Dysfunction. Chem.Res. Toxicol. 17, 208-217.
Weldrick DD, Chodacka B, Vogt R, and Steenkamp DJ, (1999) The effect of buthionine sulfoximine on the growth of Leishmania donovani in culture. FEMS Microbiol. Lett. 173 ,139–146.
Williams PL, and Dusenbery DB. (1990) Aquatic toxicity testing using the nematode Caenorhabditis elegans. Environ Toxicol Chem 9, 1285–1290.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25547-
dc.description.abstractGamma-glutamylcysteine synthetase (γ-GCS) 是glutathione (GSH) 合成的速率決定步驟酵素,證明GSH對於C. elegans抵抗砷所造成的氧化壓力扮演重要的角色,另外亦探討在C. elegans中所預測出GCS (h)的同源基因, gcs-1,對於暴露砷時所造成的反應。當C. elegans暴露於三價砷以及五價砷時,gcs-1突變種對於抵抗砷所造成的毒性比野生種線蟲更為敏感。另外,gcs-1突變種C. elegans亦比野生種C. elegans對於砷所造成的毒性反應較快。將gcs-1突變種C. elegans預先暴露於GSH,可明顯提高gcs-1突變種暴露於三價砷與五價砷時的存活率。我們亦探討C. elegans體內的GSH含量與不同砷劑量間的關係。並且利用RNA干擾技術,mRNA表達和基因轉殖C. elegans探討GCS-1的功能。我們亦探討砷對於C. elegans中其他可能和氧化壓力有關基因的表達的關係。研究的結果顯示在C. elegans中GCS-1是合成GSH所必須的,並且GSH的含量對於抵抗砷所造成的氧化壓力扮演著重要的角色,以及在C. elegans中砷會誘導化壓力相關基因mRNA的表達。zh_TW
dc.description.abstractGamma-glutamylcysteine synthetase (γ-GCS) catalyzes the first, rate-limiting step in the biosynthesis of glutathione (GSH). To evaluate the protective role of cellular GSH against arsenic-induced oxidative stress in Caenorhabditis elegans (C. elegans), we examined the effect of the C. elegans ortholog of GCS(h), gcs-1, in response to inorganic arsenic exposure. We have evaluated the responses of wild-type and gcs-1 mutant nematodes to both inorganic arsenite (As(III)) and arsenate (As(V)) ions and found that gcs-1 mutant nematodes are more sensitive to arsenic toxicity than that of wild-type animals. gcs-1 mutant nematodes also showed an earlier response to the exposure of As(III) and As(V) than that of wild-type animals. Pretreatment with GSH significantly raised the survival rate of gcs-1 mutant worms compared to As(III)- or As(V)-treated worms alone. The intracellular GSH level increases in C. elegans exposed to As(III) and gcs-1 expression level is induced by As(III). The functional importantance of GCS-1 in C. elegans exposed to As(III) is investigated by analysis of gcs-1 transcription in transgenic C. elegans and RNAi mediated GCS-1 knock-down worms. The level of mRNA expression of several potential oxidative response gene is response to As(III) exposure was also investigated. Our results show that GCS-1 is essential for the synthesis of intracellular GSH in C. elegans and consequently that the intracellular GSH status plays a critical role in protection of C. elegans from arsenic-induced oxidative stress. Furthermore, As(III) is capable of inducing mRNA expression of oxidative stress-related genes.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:18:10Z (GMT). No. of bitstreams: 1
ntu-96-R93622018-1.pdf: 2245988 bytes, checksum: 44f081cdf1b887d8d59ea3ff1ed3c140 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
TABLE OF CONTENTS IV
LIST OF FIGURES VI
LIST OF TABLE VII
ABBREVIATION VIII
CHAPTER 1 INTRODUCTION 1
1.1 Arsenic 1
1.2 Oxidative stress 3
1.3 Glutathione and Glutamate Cysteine Synthetase 5
1.4 Caenorhabditis. elegans 8
1.5 GCS homolog in C. elegans 9
1.6. Purpose of study 10
CHAPTER 2 MATERIALS AND METHODS 12
2.1 Chemicals 12
2.2 Strains, clones, and culture condition 12
2.3 Arsenic toxicity analyses 12
2.4 Intracellular GSH measurement 13
2.5 GSH rescue assay 14
2.6 Culture and isolation of C. elegans exposed to various stressors 14
2.7 Real-time RT-PCR 15
2.8 RNA Interference (RNAi) 16
2.9 Effect of transgenic C. elegans 19
2.10 Data analysis 20
CHAPTER 3 RESULT 21
3.1 Structure and organization of gcs-1 gene structure 21
3.2 Intracellular GSH measurement 21
3.3 Lethality tests of As(III) and As(V) and establishment of LC50 value 25
3.4 Time-dependence of As(III) and As(V) toxicity in C. elegans 28
3.5 GSH rescues gcs-1 mutant 30
3.7 Analysis of GCS-1 mRNA level affected by As(III) 32
3.8 Effects of As(III) on oxidative stress responsive genes 35
3.10 Effect of various stressors on gcs-1 transcription in transgenic C. elegans 41
CHAPTER 4 DISCUSSION 46
CHAPTER 5 CONCLUSION 53
REFERENCE 54
APPENDIX 59
dc.language.isoen
dc.subject氧化壓力zh_TW
dc.subjectGamma-glutamylcysteine synthetasezh_TW
dc.subjectglutathionezh_TW
dc.subjectCaenorhabditis eleganszh_TW
dc.subject砷zh_TW
dc.subjectGamma-glutamylcysteine synthetaseen
dc.subjectarsenicen
dc.subjectCaenorhabditis elegansen
dc.subjectglutathioneen
dc.titleCaenorhabditis elegans之gcs-1基因與砷造成之氧化壓力之探討zh_TW
dc.titleCaenorhabditis elegans gcs-1 confers resistance to arsenic-induced oxidative stressen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree碩士
dc.contributor.oralexamcommittee沈偉強(Wei-Chiang Shen),李心予(Hsin-Yu Lee)
dc.subject.keywordGamma-glutamylcysteine synthetase,glutathione,Caenorhabditis elegans,砷,氧化壓力,zh_TW
dc.subject.keywordGamma-glutamylcysteine synthetase,glutathione,Caenorhabditis elegans,arsenic,en
dc.relation.page60
dc.rights.note未授權
dc.date.accepted2007-01-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved