請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25541
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李芳仁(Fang-Jen, Lee) | |
dc.contributor.author | Yung-Lan Su | en |
dc.contributor.author | 蘇詠嵐 | zh_TW |
dc.date.accessioned | 2021-06-08T06:17:54Z | - |
dc.date.copyright | 2011-10-05 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-03 | |
dc.identifier.citation | Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V (2009) The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122: 1906-1916
Angeles R, Devine J, Barton K, Smith M, McCauley R (1999) Mutation of K234 and K236 in the voltage-dependent anion channel 1 impairs its insertion into the mitochondrial outer membrane. J Bioenerg Biomembr 31: 137-142 Arroyo-Helguera O, Mejia-Viggiano C, Varela-Echavarria A, Cajero-Juarez M, Aceves C (2005) Regulatory role of the 3' untranslated region (3'UTR) of rat 5' deiodinase (D1). effects on messenger RNA translation and stability. Endocrine 27: 219-225 Barreau C (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Research 33: 7138-7150 Bevilacqua A, Ceriani MC, Capaccioli S, Nicolin A (2003) Post-transcriptional regulation of gene expression by degradation of messenger RNAs. J Cell Physiol 195: 356-372 Birney E, Kumar S, Krainer AR (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21: 5803-5816 Brooks SA, Connolly JE, Rigby WF (2004) The role of mRNA turnover in the regulation of tristetraprolin expression: evidence for an extracellular signal-regulated kinase-specific, AU-rich element-dependent, autoregulatory pathway. J Immunol 172: 7263-7271 Brown RS (2005) Zinc finger proteins: getting a grip on RNA. Current Opinion in Structural Biology 15: 94-98 Buu LM, Jang LT, Lee FJ (2004) The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem 279: 453-462 Chen CY, Shyu AB (1994) Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol Cell Biol 14: 8471-8482 Ciais D, Bohnsack MT, Tollervey D (2008) The mRNA encoding the yeast ARE-binding protein Cth2 is generated by a novel 3' processing pathway. Nucleic Acids Research 36: 3075-3084 Cléry A, Blatter M, Allain FHT (2008) RNA recognition motifs: boring? Not quite. Current Opinion in Structural Biology 18: 290-298 Cui Y, Gonzalez CI, Kinzy TG, Dinman JD, Peltz SW (1999) Mutations in the MOF2/SUI1 gene affect both translation and nonsense-mediated mRNA decay. RNA 5: 794-804 Deo RC, Bonanno JB, Sonenberg N, Burley SK (1999) Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98: 835-845 Dong S, Li C, Zenklusen D, Singer RH, Jacobson A, He F (2007) YRA1 autoregulation requires nuclear export and cytoplasmic Edc3p-mediated degradation of its pre-mRNA. Mol Cell 25: 559-573 Duttagupta R, Vasudevan S, Wilusz CJ, Peltz SW (2003) A Yeast Homologue of Hsp70, Ssa1p, Regulates Turnover of the MFA2 Transcript through Its AU-Rich 3' Untranslated Region. Molecular and Cellular Biology 23: 2623-2632 Fischer N, Weis K (2002) The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J 21: 2788-2797 Forte M, Guy HR, Mannella CA (1987) Molecular genetics of the VDAC ion channel: structural model and sequence analysis. J Bioenerg Biomembr 19: 341-350 Fuller-Pace FV (2006) DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34: 4206-4215 Gao M, Wilusz CJ, Peltz SW, Wilusz J (2001) A novel mRNA-decapping activity in HeLa cytoplasmic extracts is regulated by AU-rich elements. EMBO J 20: 1134-1143 Jacobson A (2004) Regulation of mRNA Decay. Molecular Cell 15: 1-2 Jang LT, Buu LM, Lee FJ (2006) Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J Biol Chem 281: 29379-29390 Khera TK, Dick AD, Nicholson LB (2010) Mechanisms of TNFα regulation in uveitis: Focus on RNA-binding proteins. Progress in Retinal and Eye Research 29: 610-621 Ladd AN, Cooper TA (2004) Multiple domains control the subcellular localization and activity of ETR-3, a regulator of nuclear and cytoplasmic RNA processing events. J Cell Sci 117: 3519-3529 Lagnado CA, Brown CY, Goodall GJ (1994) AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol 14: 7984-7995 Lee FJ, Moss J (1993) An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J Biol Chem 268: 15080-15087 Lund MK, Kress TL, Guthrie C (2008) Autoregulation of Npl3, a yeast SR protein, requires a novel downstream region and serine phosphorylation. Mol Cell Biol 28: 3873-3881 Maris C, Dominguez C, Allain FHT (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS Journal 272: 2118-2131 Matunis MJ, Matunis EL, Dreyfuss G (1993) PUB1: a major yeast poly(A)+ RNA-binding protein. Mol Cell Biol 13: 6114-6123 McAlister VJ, Christie GE (2009) Analysis of DNA binding by a eubacterial zinc finger transcription factor. J Bacteriol 191: 4513-4521 Muhlrad D, Parker R (1992) Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev 6: 2100-2111 Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320: 1344-1349 Parker R, Song H (2004) The enzymes and control of eukaryotic mRNA turnover. Nature Structural & Molecular Biology 11: 121-127 Pedro-Segura E, Vergara SV, Rodriguez-Navarro S, Parker R, Thiele DJ, Puig S (2008) The Cth2 ARE-binding Protein Recruits the Dhh1 Helicase to Promote the Decay of Succinate Dehydrogenase SDH4 mRNA in Response to Iron Deficiency. Journal of Biological Chemistry 283: 28527-28535 Puig S, Askeland E, Thiele DJ (2005) Coordinated Remodeling of Cellular Metabolism during Iron Deficiency through Targeted mRNA Degradation. Cell 120: 99-110 Query CC, Bentley RC, Keene JD (1989) A common RNA recognition motif identified within a defined U1 RNA binding domain of the 70K U1 snRNP protein. Cell 57: 89-101 Sanduja S, Blanco FF, Dixon DA (2011) The roles of TTP and BRF proteins in regulated mRNA decay. Wiley Interdisciplinary Reviews: RNA 2: 42-57 Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8: 251-262 Tucker M, Staples RR, Valencia-Sanchez MA, Muhlrad D, Parker R (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J 21: 1427-1436 Vasudevan S, Garneau N, Tu Khounh D, Peltz SW (2005) p38 Mitogen-Activated Protein Kinase/Hog1p Regulates Translation of the AU-Rich-Element-Bearing MFA2 Transcript. Molecular and Cellular Biology 25: 9753-9763 Vergara SV, Puig S, Thiele DJ (2010) Early Recruitment of AU-Rich Element-Containing mRNAs Determines Their Cytosolic Fate during Iron Deficiency. Molecular and Cellular Biology 31: 417-429 Weston A, Sommerville J (2006) Xp54 and related (DDX6-like) RNA helicases: roles in messenger RNP assembly, translation regulation and RNA degradation. Nucleic Acids Res 34: 3082-3094 Wilusz CJ, Wormington M, Peltz SW (2001) The cap-to-tail guide to mRNA turnover. Nat Rev Mol Cell Biol 2: 237-246 Xu N, Chen CY, Shyu AB (1997) Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 17: 4611-4621 Zubiaga AM, Belasco JG, Greenberg ME (1995) The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol 15: 2219-2230 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25541 | - |
dc.description.abstract | 真核細胞中,訊息核醣核酸在調控基因表現中扮演重要的角色。細胞中的訊息核醣核酸需與不同的核醣核酸結合蛋白結合才得以進行核醣核酸新陳代謝,包括訊息核醣核酸的修飾、運輸、降解、及轉譯成蛋白質的過程。過去實驗室發現酵母菌中結合蛋白Rbp1p為一生長調控因子。目前已知在細胞中大量表現Rbp1p會抑制酵母菌的生長。Rbp1p也能夠促進粒線體外膜孔蛋白porin訊息核醣核酸之降解。我們發現當細胞缺少Rbp1p時會增加細胞生長速率,然而在野生型或缺少Rbp1p的突變株中大量表現Rbp1p蛋白質則會相似的減緩生長速率。因此,我們猜測Rbp1p可能有自我調節表現的機制。進一步的,利用報導者分析發現報導者接上RBP1訊息核醣核酸的3'非轉譯區後表現量會受到Rbp1p的抑制。我們找到RBP1訊息核醣核酸的3'非轉譯區中含有一些保守序列可能參與Rbp1p的自我調控機制。同時,我們證實Rbp1p的自我調控機制需要其蛋白質上的三個訊息核醣核酸結合區。當細胞缺少參與訊息核醣核酸脫帽反應的蛋白質Dhh1p或是Lsm1p-7p-Pat1複合物時,Rbp1p無法自我調控表現。
在酵母菌雙雜合系統中觀察到Rbp1和porin的結合,我們假設這兩者的結合可能調控由Rb1p1所調節的porin訊息核醣核酸降解。然而,實驗結果顯示無論在野生型或是缺少RBP1的突變株中大量表現外生性porin都會抑制內生性porin訊息核醣核酸的表現量。Rbp1p和porin結合的功能仍需未來深入研究。 | zh_TW |
dc.description.abstract | Regulation of eukaryotic messenger RNAs (mRNAs) is an important factor in controlling gene expression. Cellular mRNAs associate to RNA binding proteins to go through RNA metabolism, including processing, export, turnover, localization, and translation of mRNA. Rbp1p, an RNA-binding protein, was previously characterized as a negative growth regulator in Saccharomyces cerevisiae. Overexpression of Rbp1p, but not the N-terminally truncated form, decreases the porin mRNA expression by enhancing degradation. In vitro binding assay indicates Rbp1p binds the (C/G)U-rich element of the porin mRNA 3’-untranslated region (3’UTR). Our lab concluded that Rbp1p is involved in the post-transcriptional regulation of porin mRNA. Plating result showed the growth rate is increased in yeast lacking Rbp1p; however, the growth rate of yeast was roughly the same whether expression of exogenous Rbp1p in wild-type or rbpl△ yeast. We suspected that Rbp1p might regulate its own expression. We showed that overexpression of exogenous Rbp1p decreased endogenous Rbp1p mRNA and protein level. Using reporter assay, we demonstrated that Rbp1p decreased the expression of reporter carrying 3’UTR of RBP1. We further determined the length of RBP1 mRNA 3’UTR and searched for several conserved regions, including putative AU-rich element and polyuridine-rich sequences were located in RBP1 mRNA 3’UTR. We demonstrated that RNA regulate its own expression. We showed that overexpression of exogenous Rbp1p recognition ability of Rbp1p is needed for its autoregulation. Moreover, our results indicated autoregulation of Rbp1p depends on decapping factors, Dhh1p and Lsm1p-7p-Pat1 complex. Theis observation suggests autoregulation of Rbp1p through 5’ to 3’ mRNA decay mechanism.
Previous yeast two-hybrid result in our lab showed the Rbp1p interacts with porin. We speculated that the interaction between porin and Rbp1p might involve in Rbp1-mediated porin mRNA degradation. However, we observed that amount of porin was very similar after epichromosomal (gene in a 2μ plasmid controlled by an ADH1 promoter), and chromosomal expression (endogenous gene controlled by the endogenous promoter). On the other hand, we showed exogenous porin decrease endogenous POR1 mRNA both in wild-type and rbp1 | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:17:54Z (GMT). No. of bitstreams: 1 ntu-100-R98448001-1.pdf: 3146161 bytes, checksum: 9814e622aa126d2d7a051f0f9661b22b (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 中文摘要 ................................................................................................... iv
Abstract ...................................................................................................... v Introduction ............................................................................................... 1 Results ...................................................................................................... 12 Part I: Regulation of Rbp1p in Saccharomyces cerevisiae ...................................... 12 Part II: Regulation of porin expression in Saccharomyces cerevisiae ..................... 18 Discussion................................................................................................. 20 Materials and Methods ........................................................................... 26 Figures ...................................................................................................... 34 Figure 1. Overexpression of Rbp1p results in similar growth defect in wild-type and rbp1△ yeast. .............................................................................................................. 34 Figure 2. Rbp1p downregulates its own expression. ................................................ 35 Figure 3. Protein and RNA level of GFP-RBP3’UTR are decreased in yeast expressing exogenous Rbp1p.................................................................................. 36 Figure 4. Expressing exogenous Rbp1p decreases GFP-RBP3’UTR expression in late-log and stationary phase. ................................................................................... 37 Figure 5. Determine the length of RBP1 mRNA 3’UTR. ........................................ 38 Figure 6. Sequences of RBP1 mRNA 3’UTR .......................................................... 39 Figure 7. Indication of ARE mutations and schematic representation of putative GFP-reporter............................................................................................................. 40 Figure 8. Protein and RNA level of GFP-RBP3’UTR -AREmt1 and -AREmt2 are decreased in yeast expressing exogenous Rbp1p. .................................................... 41 Figure 9. Mutation of three RRM domains, respectively, result in loss of Rbp1p-mediated suppression of GFP-RBP13’UTR expression. .................................. 43 Figure 10. RNA recognition ability of Rbp1p is needed for its autoregulation. ...... 44 Figure 11. Rbp1p lost autoregulatory ability in dhh1△, lsm1△, and pat1△ strains. . 45 Figure 12. Hypothesized model of Rbp1p autoregulation. ...................................... 46 Figure 13. Overexpressed porin in wild-type BY4741, por1△ and wild-type BY4742 strains. ........................................................................................................ 47 Figure 14. Overexpression of exogenous porin suppresses endogenous POR1 mRNA in wild-type and rbp1△ strains. .................................................................... 48 Appendix 1. Porin interacted with Rbp1p in yeast two-hybrid assay. ..................... 49 Appendix 2. Two U-rich regions locate in RBP1 mRNA 3’UTR. ........................... 50 Table 1. Yeast strains used in this study ............................................... 51 Table 2. Primers used in this study ....................................................... 52 Table 3. Vectors used in this study ........................................................ 54 Table 4. Antibodies used in this study .................................................. 55 References ................................................................................................ 56 | |
dc.language.iso | en | |
dc.title | 探討酵母菌核醣核酸蛋白Rbp1p及粒線體膜孔蛋白porin 之調控 | zh_TW |
dc.title | Regulation of Rbp1p and porin expression in Saccharomyces cerevisiae | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張典顯(Tien-Hsien Chang),鄧述諄(Shu-Chun Te),譚婉玉(Woan-Yuh, Tarn) | |
dc.subject.keyword | 酵母菌, | zh_TW |
dc.subject.keyword | Saccharomyces cerevisiae, | en |
dc.relation.page | 61 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-03 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
顯示於系所單位: | 分子醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 3.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。