請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25530
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 湯志永(Chih-Yung Tang) | |
dc.contributor.author | Szu-Han Chen | en |
dc.contributor.author | 陳思涵 | zh_TW |
dc.date.accessioned | 2021-06-08T06:17:25Z | - |
dc.date.copyright | 2011-10-05 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-03 | |
dc.identifier.citation | Accili, E.A., J. Kiehn, B.A. Wible, and A.M. Brown. 1997. Interactions among inactivating and noninactivating Kvbeta subunits, and Kvalpha1.2, produce potassium currents with intermediate inactivation. J Biol Chem. 272:28232-28236.
Albrecht, B., K. Weber, and O. Pongs. 1995. Characterization of a voltage-activated K-channel gene cluster on human chromosome 12p13. Receptors Channels. 3:213-220. Aldrich, R.W. 2001. Fifty years of inactivation. Nature. 411:643-644. Baloh, R.W., Q. Yue, J.M. Furman, and S.F. Nelson. 1997. Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol. 41:8-16. Bardoni, R., and O. Belluzzi. 1993. Kinetic study and numerical reconstruction of A-type current in granule cells of rat cerebellar slices. J Neurophysiol. 69:2222-2231. Bretschneider, F., A. Wrisch, F. Lehmann-Horn, and S. Grissmer. 1999. Expression in mammalian cells and electrophysiological characterization of two mutant Kv1.1 channels causing episodic ataxia type 1 (EA-1). Eur J Neurosci. 11:2403-2412. Browne, D.L., E.R. Brunt, R.C. Griggs, J.G. Nutt, S.T. Gancher, E.A. Smith, and M. Litt. 1995. Identification of two new KCNA1 mutations in episodic ataxia/myokymia families. Hum Mol Genet. 4:1671-1672. Browne, D.L., S.T. Gancher, J.G. Nutt, E.R. Brunt, E.A. Smith, P. Kramer, and M. Litt. 1994. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet. 8:136-140. Brunt, E.R., and T.W. van Weerden. 1990. Familial paroxysmal kinesigenic ataxia and continuous myokymia. Brain. 113 ( Pt 5):1361-1382. Chandy, K.G. 1991. Simplified gene nomenclature. Nature. 352:26. Chen, H., C. von Hehn, L.K. Kaczmarek, L.R. Ment, B.R. Pober, and F.M. Hisama. 2007. Functional analysis of a novel potassium channel (KCNA1) mutation in hereditary myokymia. Neurogenetics. 8:131-135. Choe, S. 2002. Potassium channel structures. Nat Rev Neurosci. 3:115-121. Choi, K.L., R.W. Aldrich, and G. Yellen. 1991. Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proc Natl Acad Sci U S A. 88:5092-5095. Coleman, S.K., J. Newcombe, J. Pryke, and J.O. Dolly. 1999. Subunit composition of Kv1 channels in human CNS. J Neurochem. 73:849-858. Comu, S., M. Giuliani, and V. Narayanan. 1996. Episodic ataxia and myokymia syndrome: a new mutation of potassium channel gene Kv1.1. Ann Neurol. 40:684-687. Connor, J.A., and C.F. Stevens. 1971. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol. 213:21-30. Cooper, E.C., A. Milroy, Y.N. Jan, L.Y. Jan, and D.H. Lowenstein. 1998. Presynaptic localization of Kv1.4-containing A-type potassium channels near excitatory synapses in the hippocampus. J Neurosci. 18:965-974. Eunson, L.H., R. Rea, S.M. Zuberi, S. Youroukos, C.P. Panayiotopoulos, R. Liguori, P. Avoni, R.C. McWilliam, J.B. Stephenson, M.G. Hanna, D.M. Kullmann, and A. Spauschus. 2000. Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol. 48:647-656. Geiger, J.R., and P. Jonas. 2000. Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons. Neuron. 28:927-939. Giese, K.P., J.F. Storm, D. Reuter, N.B. Fedorov, L.R. Shao, T. Leicher, O. Pongs, and A.J. Silva. 1998. Reduced K+ channel inactivation, spike broadening, and after-hyperpolarization in Kvbeta1.1-deficient mice with impaired learning. Learn Mem. 5:257-273. Glaudemans, B., J. van der Wijst, R.H. Scola, P.J. Lorenzoni, A. Heister, A.W. van der Kemp, N.V. Knoers, J.G. Hoenderop, and R.J. Bindels. 2009. A missense mutation in the Kv1.1 voltage-gated potassium channel-encoding gene KCNA1 is linked to human autosomal dominant hypomagnesemia. J Clin Invest. 119:936-942. Gulbis, J.M., S. Mann, and R. MacKinnon. 1999. Structure of a voltage-dependent K+ channel beta subunit. Cell. 97:943-952. Gulbis, J.M., M. Zhou, S. Mann, and R. MacKinnon. 2000. Structure of the cytoplasmic beta subunit-T1 assembly of voltage-dependent K+ channels. Science. 289:123-127. Gutman, G.A., K.G. Chandy, S. Grissmer, M. Lazdunski, D. McKinnon, L.A. Pardo, G.A. Robertson, B. Rudy, M.C. Sanguinetti, W. Stuhmer, and X. Wang. 2005. International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev. 57:473-508. Hanlon, M.R., and B.A. Wallace. 2002. Structure and function of voltage-dependent ion channel regulatory beta subunits. Biochemistry. 41:2886-2894. Hansen, H.H., O. Waroux, V. Seutin, T.J. Jentsch, S. Aznar, and J.D. Mikkelsen. 2008. Kv7 channels: interaction with dopaminergic and serotonergic neurotransmission in the CNS. J Physiol. 586:1823-1832. Heinemann, S.H., J. Rettig, H.R. Graack, and O. Pongs. 1996. Functional characterization of Kv channel beta-subunits from rat brain. J Physiol. 493 ( Pt 3):625-633. Heinemann, S.H., J. Rettig, F. Wunder, and O. Pongs. 1995. Molecular and functional characterization of a rat brain Kv beta 3 potassium channel subunit. FEBS Lett. 377:383-389. Herson, P.S., M. Virk, N.R. Rustay, C.T. Bond, J.C. Crabbe, J.P. Adelman, and J. Maylie. 2003. A mouse model of episodic ataxia type-1. Nat Neurosci. 6:378-383. Hopkins, W.F., M.L. Allen, K.M. Houamed, and B.L. Tempel. 1994. Properties of voltage-gated K+ currents expressed in Xenopus oocytes by mKv1.1, mKv1.2 and their heteromultimers as revealed by mutagenesis of the dendrotoxin-binding site in mKv1.1. Pflugers Arch. 428:382-390. Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region. Neuron. 7:547-556. Imbrici, P., A. Cusimano, M.C. D'Adamo, A. De Curtis, and M. Pessia. 2003. Functional characterization of an episodic ataxia type-1 mutation occurring in the S1 segment of hKv1.1 channels. Pflugers Arch. 446:373-379. Imbrici, P., M.C. D'Adamo, D.M. Kullmann, and M. Pessia. 2006. Episodic ataxia type 1 mutations in the KCNA1 gene impair the fast inactivation properties of the human potassium channels Kv1.4-1.1/Kvbeta1.1 and Kv1.4-1.1/Kvbeta1.2. Eur J Neurosci. 24:3073-3083. Isacoff, E.Y., Y.N. Jan, and L.Y. Jan. 1990. Evidence for the formation of heteromultimeric potassium channels in Xenopus oocytes. Nature. 345:530-534. Jen, J., G.W. Kim, and R.W. Baloh. 2004. Clinical spectrum of episodic ataxia type 2. Neurology. 62:17-22. Jen, J.C., T.D. Graves, E.J. Hess, M.G. Hanna, R.C. Griggs, and R.W. Baloh. 2007. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain. 130:2484-2493. Kamb, A., L.E. Iverson, and M.A. Tanouye. 1987. Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell. 50:405-413. Kinali, M., H. Jungbluth, L.H. Eunson, C.A. Sewry, A.Y. Manzur, E. Mercuri, M.G. Hanna, and F. Muntoni. 2004. Expanding the phenotype of potassium channelopathy: severe neuromyotonia and skeletal deformities without prominent Episodic Ataxia. Neuromuscul Disord. 14:689-693. Klein, A., E. Boltshauser, J. Jen, and R.W. Baloh. 2004. Episodic ataxia type 1 with distal weakness: a novel manifestation of a potassium channelopathy. Neuropediatrics. 35:147-149. Knight, M.A., E. Storey, R.J. McKinlay Gardner, P. Hand, and S.M. Forrest. 2000. Identification of a novel missense mutation L329I in the episodic ataxia type 1 gene KCNA1--a challenging problem. Hum Mutat. 16:374. Kramer, P.L., Q. Yue, S.T. Gancher, J.G. Nutt, R. Baloh, E. Smith, D. Browne, K. Bussey, E. Lovrien, S. Nelson, and et al. 1995. A locus for the nystagmus-associated form of episodic ataxia maps to an 11-cM region on chromosome 19p. Am J Hum Genet. 57:182-185. Lazaroff, M.A., A.D. Hofmann, and A.B. Ribera. 1999. Xenopus embryonic spinal neurons express potassium channel Kvbeta subunits. J Neurosci. 19:10706-10715. Lee, H., H. Wang, J.C. Jen, C. Sabatti, R.W. Baloh, and S.F. Nelson. 2004. A novel mutation in KCNA1 causes episodic ataxia without myokymia. Hum Mutat. 24:536. Leicher, T., J. Roeper, K. Weber, X. Wang, and O. Pongs. 1996. Structural and functional characterization of human potassium channel subunit beta 1 (KCNA1B). Neuropharmacology. 35:787-795. Li, Y., S.Y. Um, and T.V. McDonald. 2006. Voltage-gated potassium channels: regulation by accessory subunits. Neuroscientist. 12:199-210. Liman, E.R., P. Hess, F. Weaver, and G. Koren. 1991. Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature. 353:752-756. Litt, M., P. Kramer, D. Browne, S. Gancher, E.R. Brunt, D. Root, T. Phromchotikul, C.J. Dubay, and J. Nutt. 1994. A gene for episodic ataxia/myokymia maps to chromosome 12p13. Am J Hum Genet. 55:702-709. Logothetis, D.E., S. Movahedi, C. Satler, K. Lindpaintner, and B. Nadal-Ginard. 1992. Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge. Neuron. 8:531-540. Majumder, K., M. De Biasi, Z. Wang, and B.A. Wible. 1995. Molecular cloning and functional expression of a novel potassium channel beta-subunit from human atrium. FEBS Lett. 361:13-16. Maylie, B., E. Bissonnette, M. Virk, J.P. Adelman, and J.G. Maylie. 2002. Episodic ataxia type 1 mutations in the human Kv1.1 potassium channel alter hKvbeta 1-induced N-type inactivation. J Neurosci. 22:4786-4793. McCormack, K., T. McCormack, M. Tanouye, B. Rudy, and W. Stuhmer. 1995. Alternative splicing of the human Shaker K+ channel beta 1 gene and functional expression of the beta 2 gene product. FEBS Lett. 370:32-36. McCormack, T., and K. McCormack. 1994. Shaker K+ channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell. 79:1133-1135. McNamara, N.M., S. Averill, G.P. Wilkin, J.O. Dolly, and J.V. Priestley. 1996. Ultrastructural localization of a voltage-gated K+ channel alpha subunit (KV 1.2) in the rat cerebellum. Eur J Neurosci. 8:688-699. McNamara, N.M., Z.M. Muniz, G.P. Wilkin, and J.O. Dolly. 1993. Prominent location of a K+ channel containing the alpha subunit Kv 1.2 in the basket cell nerve terminals of rat cerebellum. Neuroscience. 57:1039-1045. Monaghan, M.M., J.S. Trimmer, and K.J. Rhodes. 2001. Experimental localization of Kv1 family voltage-gated K+ channel alpha and beta subunits in rat hippocampal formation. J Neurosci. 21:5973-5983. Mori, Y., T. Friedrich, M.S. Kim, A. Mikami, J. Nakai, P. Ruth, E. Bosse, F. Hofmann, V. Flockerzi, T. Furuichi, and et al. 1991. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature. 350:398-402. Noda, M., S. Shimizu, T. Tanabe, T. Takai, T. Kayano, T. Ikeda, H. Takahashi, H. Nakayama, Y. Kanaoka, N. Minamino, and et al. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 312:121-127. Papazian, D.M., T.L. Schwarz, B.L. Tempel, Y.N. Jan, and L.Y. Jan. 1987. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science. 237:749-753. Papazian, D.M., L.C. Timpe, Y.N. Jan, and L.Y. Jan. 1991. Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature. 349:305-310. Park, K.S., J.W. Yang, E. Seikel, and J.S. Trimmer. 2008. Potassium channel phosphorylation in excitable cells: providing dynamic functional variability to a diverse family of ion channels. Physiology (Bethesda). 23:49-57. Planells-Cases, R., A.V. Ferrer-Montiel, C.D. Patten, and M. Montal. 1995. Mutation of conserved negatively charged residues in the S2 and S3 transmembrane segments of a mammalian K+ channel selectively modulates channel gating. Proc Natl Acad Sci U S A. 92:9422-9426. Pongs, O. 1999. Voltage-gated potassium channels: from hyperexcitability to excitement. FEBS Lett. 452:31-35. Pongs, O., T. Leicher, M. Berger, J. Roeper, R. Bahring, D. Wray, K.P. Giese, A.J. Silva, and J.F. Storm. 1999. Functional and molecular aspects of voltage-gated K+ channel beta subunits. Ann N Y Acad Sci. 868:344-355. Poujois, A., J.C. Antoine, A. Combes, and R.L. Touraine. 2006. Chronic neuromyotonia as a phenotypic variation associated with a new mutation in the KCNA1 gene. J Neurol. 253:957-959. Rajakulendran, S., S. Schorge, D.M. Kullmann, and M.G. Hanna. 2007. Episodic ataxia type 1: a neuronal potassium channelopathy. Neurotherapeutics. 4:258-266. Rasmusson, R.L., M.J. Morales, S. Wang, S. Liu, D.L. Campbell, M.V. Brahmajothi, and H.C. Strauss. 1998. Inactivation of voltage-gated cardiac K+ channels. Circ Res. 82:739-750. Rea, R., A. Spauschus, L.H. Eunson, M.G. Hanna, and D.M. Kullmann. 2002. Variable K(+) channel subunit dysfunction in inherited mutations of KCNA1. J Physiol. 538:5-23. Rettig, J., S.H. Heinemann, F. Wunder, C. Lorra, D.N. Parcej, J.O. Dolly, and O. Pongs. 1994. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit. Nature. 369:289-294. Rhodes, K.J., S.A. Keilbaugh, N.X. Barrezueta, K.L. Lopez, and J.S. Trimmer. 1995. Association and colocalization of K+ channel alpha- and beta-subunit polypeptides in rat brain. J Neurosci. 15:5360-5371. Rhodes, K.J., M.M. Monaghan, N.X. Barrezueta, S. Nawoschik, Z. Bekele-Arcuri, M.F. Matos, K. Nakahira, L.E. Schechter, and J.S. Trimmer. 1996. Voltage-gated K+ channel beta subunits: expression and distribution of Kv beta 1 and Kv beta 2 in adult rat brain. J Neurosci. 16:4846-4860. Rhodes, K.J., B.W. Strassle, M.M. Monaghan, Z. Bekele-Arcuri, M.F. Matos, and J.S. Trimmer. 1997. Association and colocalization of the Kvbeta1 and Kvbeta2 beta-subunits with Kv1 alpha-subunits in mammalian brain K+ channel complexes. J Neurosci. 17:8246-8258. Ruppersberg, J.P., K.H. Schroter, B. Sakmann, M. Stocker, S. Sewing, and O. Pongs. 1990. Heteromultimeric channels formed by rat brain potassium-channel proteins. Nature. 345:535-537. Ruppersberg, J.P., M. Stocker, O. Pongs, S.H. Heinemann, R. Frank, and M. Koenen. 1991. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature. 352:711-714. Scheffer, H., E.R. Brunt, G.J. Mol, P. van der Vlies, R.P. Stulp, E. Verlind, G. Mantel, Y.N. Averyanov, R.M. Hofstra, and C.H. Buys. 1998. Three novel KCNA1 mutations in episodic ataxia type I families. Hum Genet. 102:464-466. Schultz, D., M. Litt, L. Smith, M. Thayer, and K. McCormack. 1996. Localization of two potassium channel beta subunit genes, KCNA1B and KCNA2B. Genomics. 31:389-391. Scott, V.E., Z.M. Muniz, S. Sewing, R. Lichtinghagen, D.N. Parcej, O. Pongs, and J.O. Dolly. 1994. Antibodies specific for distinct Kv subunits unveil a heterooligomeric basis for subtypes of alpha-dendrotoxin-sensitive K+ channels in bovine brain. Biochemistry. 33:1617-1623. Seoh, S.A., D. Sigg, D.M. Papazian, and F. Bezanilla. 1996. Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron. 16:1159-1167. Shamotienko, O.G., D.N. Parcej, and J.O. Dolly. 1997. Subunit combinations defined for K+ channel Kv1 subtypes in synaptic membranes from bovine brain. Biochemistry. 36:8195-8201. Shen, N.V., X. Chen, M.M. Boyer, and P.J. Pfaffinger. 1993. Deletion analysis of K+ channel assembly. Neuron. 11:67-76. Sheng, M., M.L. Tsaur, Y.N. Jan, and L.Y. Jan. 1992. Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron. 9:271-284. Sheng, M., M.L. Tsaur, Y.N. Jan, and L.Y. Jan. 1994. Contrasting subcellular localization of the Kv1.2 K+ channel subunit in different neurons of rat brain. J Neurosci. 14:2408-2417. Shi, G., K. Nakahira, S. Hammond, K.J. Rhodes, L.E. Schechter, and J.S. Trimmer. 1996. Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron. 16:843-852. Shimizu, Y., T. Kubo, and Y. Furukawa. 2002. Cumulative inactivation and the pore domain in the Kv1 channels. Pflugers Arch. 443:720-730. Spauschus, A., L. Eunson, M.G. Hanna, and D.M. Kullmann. 1999. Functional characterization of a novel mutation in KCNA1 in episodic ataxia type 1 associated with epilepsy. Ann N Y Acad Sci. 868:442-446. Stuhmer, W., J.P. Ruppersberg, K.H. Schroter, B. Sakmann, M. Stocker, K.P. Giese, A. Perschke, A. Baumann, and O. Pongs. 1989. Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J. 8:3235-3244. Tempel, B.L., Y.N. Jan, and L.Y. Jan. 1988. Cloning of a probable potassium channel gene from mouse brain. Nature. 332:837-839. Tempel, B.L., D.M. Papazian, T.L. Schwarz, Y.N. Jan, and L.Y. Jan. 1987. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science. 237:770-775. Torres, Y.P., F.J. Morera, I. Carvacho, and R. Latorre. 2007. A marriage of convenience: beta-subunits and voltage-dependent K+ channels. J Biol Chem. 282:24485-24489. Trimmer, J.S. 1998. Regulation of ion channel expression by cytoplasmic subunits. Curr Opin Neurobiol. 8:370-374. Trimmer, J.S., and K.J. Rhodes. 2004. Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol. 66:477-519. Vahedi, K., A. Joutel, P. Van Bogaert, A. Ducros, J. Maciazeck, J.F. Bach, M.G. Bousser, and E. Tournier-Lasserve. 1995. A gene for hereditary paroxysmal cerebellar ataxia maps to chromosome 19p. Ann Neurol. 37:289-293. Veh, R.W., R. Lichtinghagen, S. Sewing, F. Wunder, I.M. Grumbach, and O. Pongs. 1995. Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur J Neurosci. 7:2189-2205. Wang, H., D.D. Kunkel, T.M. Martin, P.A. Schwartzkroin, and B.L. Tempel. 1993. Heteromultimeric K+ channels in terminal and juxtaparanodal regions of neurons. Nature. 365:75-79. Wang, H., D.D. Kunkel, P.A. Schwartzkroin, and B.L. Tempel. 1994. Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci. 14:4588-4599. Yellen, G. 2002. The voltage-gated potassium channels and their relatives. Nature. 419:35-42. Yu, F.H., V. Yarov-Yarovoy, G.A. Gutman, and W.A. Catterall. 2005. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev. 57:387-395. Zerangue, N., Y.N. Jan, and L.Y. Jan. 2000. An artificial tetramerization domain restores efficient assembly of functional Shaker channels lacking T1. Proc Natl Acad Sci U S A. 97:3591-3595. Zerr, P., J.P. Adelman, and J. Maylie. 1998. Episodic ataxia mutations in Kv1.1 alter potassium channel function by dominant negative effects or haploinsufficiency. J Neurosci. 18:2842-2848. Zhou, M., J.H. Morais-Cabral, S. Mann, and R. MacKinnon. 2001. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature. 411:657-661. Zuberi, S.M., L.H. Eunson, A. Spauschus, R. De Silva, J. Tolmie, N.W. Wood, R.C. McWilliam, J.B. Stephenson, D.M. Kullmann, and M.G. Hanna. 1999. A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain. 122 ( Pt 5):817-825. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25530 | - |
dc.description.abstract | 第一型陣發性運動失調症 (Episodic ataxia type 1, EA1) 是一種體染色體顯性遺傳的神經性疾病。EA1是由於人類第十二對染色體 (12p13) 上的KCNA1基因突變所致,而KCNA1基因負責轉錄人類的電位控制鉀離子通道Kv1.1 (hKv1.1)。目前為止已經在EA1病人的KCNA1基因上發現了20種突變,而本篇研究主要想探討I262T和R292K兩種EA1突變是否會改變hKv1.1和hKv1.4的生物物理性質,並進而推測其神經生理意義。
我們將各種cRNA表達在非洲爪蟾的蛙卵上,再利用雙電極電位箝制技術來記錄電流。首先第一部分是針對hKv1.1 monomer (WT),I262T會造成通道的電流表現量降低,R292K則不影響電流量。兩種突變皆會使開啓速率變慢、關閉速率變快及造成活化曲線往右偏移。I262T使得通道進入不活化態的速率變慢,但從不活化態回復的速率則會變快;R292K也造成不活化速率變慢。I262T和R292K都會造成不活化曲線往右偏移。第二部分是針對hKv1.1-Kv1.1 dimer (WT-WT dimer),I262T和R292K並不會影響dimer的表現量,但兩種突變依然會使開啓速率變慢、關閉速率變快。同樣地,I262T會造成活化曲線往右偏移。I262T和R292K會造成通道進入不活化態的速率變慢。而兩者皆不改變通道從不活化態回復的速率。I262T和R292K也會造成不活化曲線往右偏移但兩者偏移的電位範圍和斜率都差不多。我們也將正常型和突變型的hKv1.1共同表現在細胞上 (WT + I262T;WT + R292K),I262T會造成電流表現量降低,而R292K依然不影響電流表現量;其活化曲線往右偏移的電位範圍和斜率皆和dimer差不多。第三部分則是針對hKv1.4與hKv1.1之相互作用,無論是共同表現 (hKv1.4 + WT) 或是hKv1.4-Kv1.1 dimer (hKv1.4-WT dimer),I262T都會造成電流表現量降低,而R292K則不改變電流表現量;兩種突變也都會使不活化曲線往右偏移,但兩者皆不改變hKv1.4-WT dimer不活化的程度、不活化速率和通道從不活化態回復的速率。當hKv1.4-WT dimer和hKvbeta1.1組合在一起時,I262T和R292K使通道在較低電位時不活化程度變小但同樣不改變不活化速率。兩種突變仍使不活化曲線往右偏移也讓通道從不活化態回復的速率變快。 由以上的實驗結果發現,I262T和R292K對於神經細胞上不同的通道組合會有相反的放電模式,進而造成了EA1病人在行為表現上出現異常。 | zh_TW |
dc.description.abstract | Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder. EA1 is caused by point mutations in the gene KCNA1 on chromosome 12p13, which encodes the human voltage-gated potassium channel Kv1.1 (hKv1.1). To date, 20 mutations in KCNA1 gene have been reported. In this study, we want to investigate whether two EA1 mutations (I262T;R292K) alter the biophysical properties of hKv1.1 and hKv1.4, and further to speculate the neurophysiological significance.
All kinds of cRNAs expressed in Xenopus laevis oocytes were studied by two-electrode voltage clamp. Here we showed that I262T reduced the current amplitude and R292K didn’t. Both EA1 mutations shifted the voltage dependence of activation to more depolarized potentials. They also slowed the activation kinetics and accelerated the deactivation kinetics of the hKv1.1. Both EA1 mutations shifted the voltage dependence of inactivation to more depolarized potentials and decreased the rate of N-type inactivation. Furthermore, I262T increased the recovery rate from inactivation. Next, we examined hKv1.1-mutant heterotetramer (WT-mutant dimer). Both EA1 mutations slowed the activation kinetics, accelerated the deactivation kinetics and decreased the rate of N-type inactivation, but they didn’t alter the current amplitude and the recovery rate from inactivation. I262T shifted the voltage dependence of activation to more depolarized potential and both EA1 mutations shifted the voltage dependence of inactivation to more depolarized potentials. To examine the effects of expressing each EA subunit with wild-type subunit, equal amounts of EA and wild-type cRNAs were coinjected. We found that I262T reduced the current amplitude and R292K didn’t. Both EA1 mutations shifted the voltage dependence of activation to more depolarized potentials. Finally, we examined heteromeric channels containing a fixed stoichiometry of two wild type hKv1.4 and two mutant hKv1.1 (hKv1.4-mutant heterotetramer). I262T reduced the current amplitude and R292K didn’t. Both EA1 mutations positively shifted the voltage dependence of inactivation and they didn’t alter the amount of N-type inactivation, the inactivation rate and the recovery rate from inactivation. When hKv1.4-WT heterotetramer coexpressed the hKvbeta1.1, the hKvbeta1.1 subunits would increase the amount of N-type inactivation of hKv1.4-WT dimer. The two EA1 mutations affected the hKv1.4-WT dimer + hKvbeta1.1 by positively shifting the voltage dependence of inactivation and increasing the recovery rate from inactivation, but they didn’t alter the inactivation rate. In conclusion, if homomeric hKv1.1 and heteromeric hKv1.1 ⁄ hKv1.4 ⁄ hKvbeta1.1 coexisted in the same neuron then the opposite biophysical effects of the mutations on these channels probably impaired the distinct nerve cell property and caused the defects of body movements in EA1 patients. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:17:25Z (GMT). No. of bitstreams: 1 ntu-100-R97441011-1.pdf: 2945305 bytes, checksum: bc70286fef84c4ffa8b897efc28ac81d (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 誌謝 i
目錄 iii 圖次 vi 表次 ix 中文摘要 x 英文摘要 xii 第一章 導論 1 1.1 離子通道概述 1 1.2 電位控制鉀離子通道的結構與基本特性 1 1.3 電位控制鉀離子通道的基因與命名 3 1.4 Kv1家族和相關的附加次單元 4 1.5 分布於中樞神經系統的電位控制鉀離子通道 5 1.6 離子通道相關病變之陣發性運動失調症 7 1.7 第一型陣發性運動失調症相關之研究 8 1.8 研究目的 9 第二章 材料與方法 11 2.1 cDNA clones 11 2.2 將EA1突變轉接到hKv1.1-Kv1.1 homodimer的第二個alpha次單元 11 2.3 將EA1突變轉接到hKv1.4-Kv1.1 heterodimer的第二個alpha次單元 12 2.4 質體DNA的轉殖及萃取 12 2.5 將DNA轉錄成RNA 13 2.6 非洲爪蟾蛙卵的處理 13 2.7 蛙卵的微量注射 14 2.8 電生理記錄 14 2.9 電刺激方式與數據分析 15 第三章 結果 18 3.1 I262T表現在蛙卵細胞中的電流量下降 18 3.2 I262T和R292K改變hKv1.1的開啓和關閉速率 19 3.3 I262T和R292K使hKv1.1的活化曲線往右偏移 20 3.4 hKvbeta1.1次單元造成hKv1.1的快速不活化性質 22 3.5 I262T + hKvbeta1.1表現在蛙卵細胞中的電流量下降 23 3.6 R292K改變hKv1.1 + hKvbeta1.1的不活化程度 24 3.7 I262T和R292K使hKv1.1 + hKvbeta1.1的不活化速率變慢 24 3.8 I262T和R292K使hKv1.1 + hKvbeta1.1的不活化曲線往右偏移 25 3.9 I262T使hKv1.1 + hKvbeta1.1的回復速率變快 25 3.10 I262T和R292K改變hKv1.1 + hKvbeta1.1的recruitment of inactivation 25 3.11 hKv1.1 + I262T表現在蛙卵細胞中的電流量下降 26 3.12 hKv1.1 + I262T和hKv1.1 + R292K的開啓機率 27 3.13 I262T和R292K不改變hKv1.1-Kv1.1 dimer在蛙卵細胞中的電流表現量 27 3.14 I262T和R292K改變hKv1.1-Kv1.1 dimer的開啓和關閉速率 28 3.15 I262T使hKv1.1-Kv1.1 dimer的活化曲線往右偏移 29 3.16 R292K改變hKv1.1-Kv1.1 dimer + hKvbeta1.1的不活化程度 30 3.17 I262T和R292K使hKv1.1-Kv1.1 dimer + hKvbeta1.1的不活化速率變慢 30 3.18 I262T和R292K使hKv1.1-Kv1.1 dimer + hKvbeta1.1的不活化曲線往右偏移 31 3.19 正常型和突變型hKv1.1-Kv1.1 dimer + hKvbeta1.1的回復速率無顯著差異 31 3.20 I262T和R292K改變hKv1.1-Kv1.1 dimer + hKvbeta1.1的recruitment of inactivation 31 3.21 hKv1.4 + I262T表現在蛙卵細胞中的電流量下降 32 3.22 I262T和R292K使hKv1.4的不活化曲線往右偏移 33 3.23 I262T會抑制hKv1.4-Kv1.1 dimer在蛙卵細胞中的電流表現量 33 3.24 I262T和R292K不改變hKv1.4-Kv1.1 dimer的不活化程度和不活化速率 34 3.25 I262T會影響hKv1.4-Kv1.1 dimer的開關機率 34 3.26 正常型和突變型hKv1.4-Kv1.1 dimer 的回復速率無顯著差異 35 3.27 I262T改變hKv1.4-Kv1.1 dimer的stimulation-dependent recruitment of inactivation 35 3.28 I262T和R292K對於hKv1.4-Kv1.1 dimer + hKvbeta1.1不活化性質的影響 35 3.29 I262T使hKv1.4-Kv1.1 dimer + hKvbeta1.1的回復速率變快 37 3.30 I262T改變hKv1.4-Kv1.1 dimer + hKvbeta1.1的stimulation-dependent recruitment of inactivation 37 3.31 I262T和R292K造成window current往右偏移 38 第四章 討論 39 4.1 EA1突變在神經生理上所代表的意義 40 4.2 I262T和R292K改變通道性質的可能原因 43 4.3 實驗不足之處 45 4.4 後續實驗設計 46 4.5 結論 47 參考文獻 97 | |
dc.language.iso | zh-TW | |
dc.title | EA1突變對於人類鉀離子通道hKv1.1及hKv1.4生物物理特性之影響 | zh_TW |
dc.title | Effects of EA1 Mutations on the Biophysical Properties of Human Potassium Channels hKv1.1 and hKv1.4 | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭鐘金,謝如姬,黃榮棋 | |
dc.subject.keyword | 第一型陣發性運動失調症,鉀離子通道,雙電極電位箝制技術, | zh_TW |
dc.subject.keyword | episodic ataxia type1,Kv1.1,Kv1.4,two electrode voltage clamp, | en |
dc.relation.page | 105 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-03 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生理學研究所 | zh_TW |
顯示於系所單位: | 生理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。