Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25497
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平
dc.contributor.authorTai Chi Chuen
dc.contributor.author鞠岱琦zh_TW
dc.date.accessioned2021-06-08T06:15:56Z-
dc.date.copyright2007-02-01
dc.date.issued2007
dc.date.submitted2007-01-30
dc.identifier.citation[1-1] S. Kawata and H. Masuhara, Nanoplasmonics: From Fundamentals to Applications, Elservier B. V., Netherlands, 2006
[1-2] R. Quidant, G. Badenes, S. Cheylan, R. Alcubilla, J.-C. Weeber and C. Girard, Opt. Exp. 12, 282 (2004).
[1-3] X. Luo and T. Ishihara, Appl. Phys. Lett. 84, 4780 (2004).
[1-4] J. T. Krug, G. D. Wang, S. R. Emory and S. Nie, J. Am. Chem. Soc. 121, 9208 (1999).
[1-5] H. Xu, J. Aizpurua, M. Käll and P. Apell, Phys. Rev. E 62, 4318 (2000).
[1-6] M. Michaels, M. Nirmal and L. E. Brus, J. Phys. Chem. B 104, 11965 (2000).
[1-7] M. Fleischmann, P. J. Hendra and A. J. McQuillan, Chem. Phys. Lett. 26, 123 (1974).
[1-8] A. Wokaun, J. P. Gordon, and P. F. Liao, Phys. Rev. Lett. 48, 957 (1982)
[1-9] S. M. Nie and S. R. Emery, Science 275, 1102 (1997).
[1-10] Y.-Y. Yu, S.-S. Chang, C.-L. Lee and C. R. Chris Wang, J. Phys. Chem. B. 101, 6661 (1997)
[1-11] S. Link, M. B. Mohamed and M. A. El-Sayed, J. Phys. Chem. B 103, 3073 (1999).
[1-12] L. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz, J. Phys. Chem. B 107, 668 (2003).
[1-13] Z. Sun and H. K. Kim, Appl. Phys. Lett. 85, 642 (2004).
[1-14] S. A. Maier, P. G. Kik, and H. A. Atwater, Appl. Phys. Lett. 81, 1714 (2002); S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, Phys. Rev. B 65, 193408 (2002).
[1-15] M. I. Stockman, Phys. Rev. Lett. 93, 137404 (2004).
[1-16] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin, 1988.
[1-17] M. Specht, J. D. Pedarnig, W. M. Heck and T. W. Haensch, Phys. Rev. Lett. 68, 476 (1992).
[1-18] S. Kawata, M. Ohtsu, M. Irie, Nano-Optics,Springer Series in Optical Sciences 84, Springer, Berlin, 2002.
[1-19] M. Born, and E. Wolf, Principles of Optics, 7th edition, Pergamon Press, Oxford, 1998.
[1-20] C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by small Particles, John Wiley & Sons, Inc., New York, 1998.
[1-21] J. D. Jackson, Classical Electrodynamics, 3rd edition, John Wiley & Sons, Inc., New York, 1999.
[1-22] U. Kreibig, M. Vollmer, Optical properties of metal clusters, Springer-Verlag, Berlin Heidelberg, 1995.
[1-23] J. P. Kottmann, O. J. F. Martin, D. R. Smith and S. Schultz, Opt. Exp. 6, 213 (2000).
[1-24] E. Hao and G. C. Schatz, J. Chem. Phys. 120, 357 (2004).
[1-25] T. Okamoto, I. Yamaguchi and T. Kobayashi, Opt. Lett. 25, 372 (2000).
[1-26] A. J. Haes, R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596 (2002).
[1-27] S.-J. Chen, F. C. Chien, G. Y. Lin and K. C. Lee, Opt. Lett. 29, 1390 (2004).
[1-28] E. Beztig, J. K. Trautman, Science 257, 189 (1992). ; E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, Appl. Phys. Lett. 61, 142 (1992).
[1-29] B. D. Terris, H. J. Marnin, G. S. Kino, Appl. Phys. Lett. 65, 388 (1994).
[1-30] K. Yasuda, M. Ono, K. Aratani, A. Fukumoto and M. Kaneko, Jpn. J. Appl. Phys. 32, 5210 (1993).
[1-31] H. Awano, S. Ohnuki, H. Shirai, N. Ohta, A. Yamaguchi, S. Sumi and Kenji Torazawa, Appl. Phys. Lett. 69, 4257 (1996).
[1-32] J. Tominaga, T. Nakano, N. Atoda, Appl. Phys. Lett. 73, 2078 (1998).
[1-33] 林威志,台灣大學物理所博士班論文,奈米超分辨近場記錄之光學研究(2005).
[1-34] D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413 (2000).
[1-35] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee and C. J. Yeh, Jpn. J. Appl. Phys. 39, part 1, 982 (2000).
[1-36] H. Fuji, J. Tominaga, L. Q. Men, T. Nakano, H. Katayama and N. Atoda, Jpn. J. Appl. Phys. 39, 980 (2000).
[1-37] T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai and W. C. Lin, J. Appl. Phys. 89, 6139 (2001).
[1-38] W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, Appl. Phys. Lett. 78, 685 (2001).
[1-39] F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu and D. P. Tsai, Jpn. J. Appl. Phys. 40, part 1, 4101 (2001).
[1-40] Y. Guo, H. Ming, L. Tang, P. Wang, Y.-H. Lu,, C.-S. Xiong, Y. –H. Xiong, T. P. Zhao, W. C. Lin and D. P. Tsai, Optik 113, 322 (2002); Y. Guo, H. Ming, L. Tang, Y. H. Lu, P. Wang, W. C. Lin and D. P. Tsai, Opt. Commun. 212, 7 (2002).
[1-41] F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, Jpn. J. Appl. Phys., Part 1 42, 1000 (2003); F. H. Ho, W. Y. Lin, H. H. Chang, P. Wang, D. P. Tsai, Journal of Microscopy 209, 254 (2003).
[1-42] W.-C. Liu and D. P. Tsai, Jpn. J. Appl. Phys. 42, Part 1, 1031 (2003).
[1-43] W.-C. Liu, M.-Y. Ng, and D. P. Tsai, Jpn. J. Appl. Phys. 43, 4713 (2004).
[1-44] K. P. Chiu, W. C. Lin, Y. H. Fu and D. P. Tsai, Jpn. J. Appl. Phys. 43, 4730 (2004).
[1-45] T. C. Chu, W.-C. Liu, and D. P. Tsai, Scanning, 26, 102 (2004).
[1-46] T. C. Chu, W.-C. Liu, and D. P. Tsai, Opt. Commun. 246, 561 (2005).
[1-47] T. Kikukawa, T. Nakano, T. Shima and J. Tominaga, Appl. Phys. Lett. 81, 4697 (2002).
[1-48] W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen and D. P. Tsai, Jpn. J. Appl. Phys. 42, 1029 (2003).
[1-49] F. Zhang, W. Xu, Y. Wang and F. Gan, Jpn. J. Appl. Phys. 43, 7802 (2004).
[1-50] Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai and D. P. Tsai, Jpn. J. Appl. Phys. 43, 5020 (2004).
[1-51] H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang and P. C. Kuo, Jpn. J. Appl. Phys. 42, 997 (2003).
[2-1] J. D. Jackson, Classical Electrodynamics, 3rd edition, John Wiley & Sons, Inc., New York, 1999.
[2-2] M. Born and E. Wolf, Principles of Optics, 7th edition, Cambridge University Press, Cambridge, 1999.
[2-3] J. B. Judkins, R. W. Ziolkowski, J. Opt. Soc. Am. A 12, 1974 (1995).
[2-4] O. J. F. Martin, A. Dereus and C. Cirard, J. Opt. Soc. Am. A 11, 1073 (1994); O. J. F. Martin, C. Girard and A. Dereux, Phys. Rev. Lett. 74, 526 (1994).
[2-5] L. Novotny, D. W. Pohl and P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994). ; L. Novotny, D. W. Pohl, B. Hecht, Opt. Lett. 20, 970 (1995).
[2-6] P. Zhou, Numerical analysis of electromagnetic fields, Springer-Verlag, Berlin, 1993.
[2-7] R. F. Harrington, Field Computation by Moment Methods, The Macmillan Co., New York, 1968
[2-8] K. S. Yee, IEEE Trans. Antennas and Propagation 14, 302 (1966).
[2-9] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Inc., Boston, 1995.
[2-10] C. A. Balanis, Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., New York, 1989.
[2-11] W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin and D. P. Tsai, Appl. Phys. Lett. 78, 685 (2001).
[2-12] F. H. Ho, H. H. Chang, Y. H. Lin and D. P. Tsai, Jpn. J. Appl. Phys. 42, 1000 (2003).
[2-13] W. C. Liu and D. P. Tsai, Jpn. J. Appl. Phys. 42, 1031 (2003).
[2-14] T. C. Chu, W.-C. Liu, and D. P. Tsai, Opt. Commun. 246, 561 (2005).
[2-15] T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, Appl. Phys. Lett. 81, 4697 (2002).
[2-16] W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen and D. P. Tsai, Jpn. J. Appl. Phys. 42, 1029 (2003).
[2-17] F. Zhang, W. Xu, Y. Wang and F. Gan, Jpn. J. Appl. Phys. 43, 7802 (2004).
[2-18] Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai and D. P. Tsai, Jpn. J. Appl. Phys. 43, 5020 (2004).
[2-19] H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang and P. C. Kuo, Jpn. J. Appl. Phys. 42, 997 (2003).
[2-20] T. Shima, M. Kuwahara, T. Fukaya, T. Nakano and J. Tominaga, Jpn. J. Appl. Phys. 43, L88 (2004).
[2-21] G. C. Sherman, J. Opt. Soc. Am. 57, 1160 (1967); G. C. Sherman, J. Opt. Soc. Am. 57, 1490 (1967).
[2-22] J. R. Shewell and E. Wolf, J. Opt. Soc. Am. 58, 1596 (1968).
[2-23] E. Wolf and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 2, 886 (1985); E. Wolf, J. T. Foley, F. Gori, J. Opt. Soc. Am. A 6, 1142 (1989).
[2-24] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill Inc., Singapore, 1996 .
[2-25] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge U. Press, Cambridge, 1995.
[3-1] J. Tominaga, T. Nakano, N. Atoda, Appl. Phys. Lett. 73, 2078 (1998).
[3-2] T. Shima, J. Kim, J. Tominaga and N. Atoda, J. Vac. Sci. Technol. A 19, 826 (2001).
[3-3] T. Fukaya, J. Tominaga, T. Nakano and N. Atoda, Appl. Phys. Lett. 75, 3114 (1999).
[3-4] C. Peng, Appl. Opt. 40, 3922 (2001).
[3-5] J. Wei and F. Gan, Appl. Phys. Lett. 82, 2607 (2003).
[3-6] F. Zhang, W. Xu, Y. Wang and F. Gan, Solid State Commun. 134, 375 (2005).
[3-7] D. P. Tsai and W. C. Lin, Appl. Phys. Lett. 77, 1413 (2000).
[3-8] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee and C. J. Yeh, Jpn. J. Appl. Phys. 39, part 1, 982 (2000).
[3-9] L. Sun, J. Wang, E. Zhang and Q. Tian, Jpn. J. Appl. Phys. 42, 5113 (2003).
[3-10] J. Tominaga, H. Fuji, A. Sato, T. Nakano, T. Fukaya and N. Atoda, Jpn. J. Appl. Phys. 38, 4089 (1999).
[3-11] W.-C. Liu, M.-Y. Ng,and D. P. Tsai, Jpn. J. Appl. Phys. 43, 4713 (2004).
[3-12] J. Tominaga, T. Nakano, N. Atoda, Appl. Phys. Lett 73, 2078 (1998).
[3-13] J. M. Vigoureux, F. Depasse, C. Girard, Appl. Opt. 31, 3036 (1992).
[3-14] J. M. Vigoureux, D. Courjon, Appl. Opt. 31, 3170 (1992).
[3-15] C. J. R. Sheppard, H. Fatemi, M. Gu, Scanning 17, 28 (1995).
[3-16] L. Tsang, J. A. Kong, K. –H. Ding and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations, John Wiley & Sons, New York, 2001.
[3-17] T. C. Chu, M.-Y. Wu, K. P. Chiu, W.-C. Liu and D. P. Tsai, Proc. SPIE 6324, 632414 (2006).
[4-1] H. Fuji, J. Tominaga, L. Q. Men, T. Nakano, H. Katayama and N. Atoda, Jpn. J. Appl. Phys. 39, 980 (2000).
[4-2] Y.-L. Chou, C.-T. Chuang, Y.-M. Chang and D. P. Tsai, Jap. J. Appl. Phys. 43, 5259 (2004).
[4-3] Y. Guo, H. Ming, L. Tang, Y. H. Lu, P. Wang, D. P. Tsai and W. C. Lin, Opt. Commun. 212, 7 (2002).
[4-4] T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai and W. C. Lin, J. Appl. Phys. 89, 6139 (2001).
[4-5] W.-C. Liu, C.-Y. Wen, K.-H. Chen, W. C. Lin, and D. P. Tsai, Appl. Phys. Lett. 78, 685 (2001).
[4-6] F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W.-C. Liu and D. P. Tsai, Jpn. J. Appl. Phys. 40, part 1, 4101 (2001).
[4-7] T. Nakano, Y. Yamakawa, J. Tominaga and N. Atoda, Jpn. J. Appl. Phys. 40, 1531 (2001).
[4-8] F. H. Ho, H. H. Chang, Y. H. Lin, B.-M. Chen, S.-Y. Wang, and D. P. Tsai, Jpn. J. Appl. Phys., Part 1 42, 1000 (2003).
[4-9] W.-C. Liu and D. P. Tsai, Jpn. J. Appl. Phys. 42, Part 1, 1031 (2003).
[4-10] W.-C. Liu, M.-Y. Ng, and D. P. Tsai, Jpn. J. Appl. Phys. 43, 4713 (2004).
[4-11] T. C. Chu, W.-C. Liu, and D. P. Tsai, Scanning 26, 102 (2004).
[4-12] K. Kataja, J. Olkkonen, J. Aikio and D. Howe, Jpn. J. Appl. Phys. 43, 160 (2004).
[4-13] T. C. Chu, W.-C. Liu, and D. P. Tsai, Opt. Commun. 246, 561 (2005).
[4-14] J. Tominaga, T. Nakano and N. Atoda, Appl. Phys. Lett. 73, 2078 (1998).
[5-1] J. Tominaga, T. Nakano, and N. Atoda, Appl. Phys. Lett. 73, 2078 (1998).
[5-2] T. Fukaya, D. Büchel, S. Shinbori, J. Tominaga, N. Atoda, D. P. Tsai and W. C. Lin, J. Appl. Phys. 89, 6139 (2001).
[5-3] W. C. Lin, T. S. Kao, H. H. Chang, Y. H. Lin, Y. H. Fu, C. T. Wu, K. H. Chen and D. P. Tsai, Jpn. J. Appl. Phys. 42, 1029 (2003).
[5-4] T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, Appl. Phys. Lett. 81, 4697 (2002).
[5-5] F. Zhang, W. Xu, Y. Wang and F. Gan, Jpn. J. Appl. Phys. 43, 7802 (2004).
[5-6] Y. H. Fu, F. H. Ho, W.-C. Hsu, S.-Y. Tsai and D. P. Tsai, Jpn. J. Appl. Phys. 43, 5020 (2004).
[5-7] H.-H. Chiang, W.-C. Hsu, S.-Y. Tsai, M.-R. Tseng, S.-P. Hsu, T.-T. Hung, C.-J. Chang and P. C. Kuo, Jpn. J. Appl. Phys. 42, 997 (2003).
[5-8] T. Shima, M. Kuwahara, T. Fukaya, T. Nakano and J. Tominaga, Jpn. J. Appl. Phys. 43, L88 (2004).
[5-9] L. Tsang, J. A. Kong and K.-H Ding, Scattering of Electromagnetic Waves: Theories and Applications (John Wiley & Sons, USA, 2000).
[5-10] T. Kikukawa, T. Kato, H. Shingai and H. Utsunomiya, Jpn. J. Appl. Phys. 40, 1624 (2001).
[5-11] J. W. Fang, C. C. Wu, A. Liao, W. C. Lin and D. P. Tsai, Jpn. J. Appl. Phys. 45, 1383 (2006).
[5-12] T. C. Chu, D. P. Tsai and W.-C. Liu, Opt. Exp. 15, 12 (2007).
[6-1] G. Indebetouw, A. E. Maghnouji and R. Foster, J. Opt. Soc. Am. A. 22, 892 (2005).
[6-2] S. A. Alexandrov, T. R. Hillman, T. Cutzler and D. D. Sampson, Phys. Rev. Lett. 97, 168102 (2006).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25497-
dc.description.abstract本論文以有限時域差分法(finite-difference time-domain method)及傅立葉光學(Fourier optics approach),研究近場光碟片之超解析效應之光學作用機制。首先,我們分別探討銻薄膜(Sb-type)及氧化銀(AgOx-type)近場光碟片中,不同的奈米結構對其近場電磁場分佈及遠場讀出訊號之影響。而研究結果發現,近場光碟片中的奈米結構可將次波長記錄點之消散訊號(evanescent signal)耦合至遠場,且奈米結構會影響遠場讀出訊號之行為,而光與奈米結構交互作用所引發之侷域表面電漿增強場可提高耦合出消散訊號之效益。
另外,為了探討近場光碟片中的奈米隨機結構所扮演的角色,我們利用簡化的傅立葉光學模型及統計平均方法,計算近場光碟片之讀出對比訊號(readout contrast signal),以此與近場光碟之載子雜訊比(carrier-to-noise ratio, CNR)比較,同時研究隨機孔洞之形狀與尺寸對讀出對比訊號之影響。除了讀出對比訊號外,我們還計算出近場光碟片之讀出波形,進一步驗證讀出對比訊號之結果。
zh_TW
dc.description.abstractNear-field optical disk structure has been an attractive topic in ultrahigh density optical data storage. Evanescent signals of subwavelength recording marks can be retrieved from optical interactions between reading laser beam and near-field active layer in near-field optical disk. In this dissertation, we use the 2-D finite-difference time-domain method (FDTD) and Fourier optics approach to study the mechanism of near-field optical disk. Near-field optical properties and far-field responses of near-field optical disks with various kinds of nanostructrures are studied by FDTD. Results show that evanescent signals of subwavelength recording marks are coupled to propagating waves by nanostructures. Furthermore, a simplified Fourier optical approach is used to study the influence of random nanostructure in near-field active layer. The general properties of near-field optical disk with random nanostructure are analyzed by statistical average. The readout contrast signal and waveform of near-field optical disk with random nano apertures is derived. Results show that resolution of near-field optical disk is influenced by the size of aperture.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:15:56Z (GMT). No. of bitstreams: 1
ntu-96-D91222023-1.pdf: 3668289 bytes, checksum: 4ade3dd4fa7b36b972c4d83c6f5b2b11 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents誌謝....................................................I
中文摘要................................................II
英文摘要......................................................III
目錄....................................................IV
圖目錄..................................................VI
1. 序論...........................................1
1.1. 奈米光子學(nano-photonics).....................1
1.2. 金屬奈米物質之表面電漿子共振(surface plasmon resonance)..............................................4
1.2.1. 表面電漿子共振理論.............................5
1.2.2. 侷域表面電漿子(localized surface plasmon)......9
1.3. 奈米近場光學記錄與近場光碟片之研究發展.........12
1.3.1. 近場光學記錄之發展 .............................13
1.3.2. 近場光碟片結構之研究與發展.....................15
Reference 18
2. 研究近場光碟片結構之方法與基礎理論.............21
2.1. 馬克士威方程式之數值方法及金屬材料之色散模型...21
2.1.1. 物質色散關係(dispersion relation)之基礎理論....21
2.1.2. 電磁波之數值計算方法...........................26
2.1.3. 有限差分時域法(finite-difference time-domain method).................................................32
2.1.4. 遠場的讀出對比訊號(readout contrast signal)....35
2.2 傅立葉光學(Fourier optics)與近場光碟片結構..........40
Reference ...............................................46
3. 銻(Sb)近場光碟片結構之光學特性與機制探討.......48
3.1. 銻薄膜之類孔穴(aperture-like)結構..............49
3.2. 粗糙表面(nano rough surface)之銻薄膜結構.......55
3.3. 結論...........................................59
Reference ...............................................60
4. 氧化銀(AgOx)近場光碟片結構之光學特性與機制探討 ...............................................62
4.1. 單顆奈米銀顆粒之尺寸效應.......................62
4.2. 奈米銀顆粒排列之結構對近場光碟片光學性質之影響 ...............................................65
4.2.1. 氧化銀近場光碟片之銀顆粒分佈...................66
4.2.2. 規則排列之銀顆粒的光學性質.....................69
4.3. 結論...........................................73
Reference ...............................................74
5. 隨機結構(Random structure)對近場光碟片之影響...76
5.1. 高斯關聯(Gaussian correlation)之隨機結構.......77
5.2. 讀出對比訊號...................................80
5.3. 隨機高斯孔洞分佈之讀出波形(waveform)...........87
5.4. 結論...........................................91
Reference...............................................92
6. 總結...........................................94
附錄A 有限差分時域法之格點設置方法......................98
附錄B向量勢之計算.......................................102
dc.language.isozh-TW
dc.subject奈米結構zh_TW
dc.subject傅立葉光學zh_TW
dc.subject有限差分時域法zh_TW
dc.subject近場光碟片zh_TW
dc.subjectfinite-difference time-domain methoden
dc.subject nanostructureen
dc.subject near-field optical disken
dc.subject Fourier opticsen
dc.title利用有限差分時域法及傅立葉光學研究奈米多層膜結構之光學特性zh_TW
dc.titleStudy of optical properties of multilayer nano thin film by finite-difference time-domain method and Fourier optics approachen
dc.typeThesis
dc.date.schoolyear95-1
dc.description.degree博士
dc.contributor.oralexamcommittee曹培熙,胡崇德,李世光,李定國,王玉麟,張建成,張宏鈞
dc.subject.keyword有限差分時域法,傅立葉光學,近場光碟片,奈米結構,zh_TW
dc.subject.keywordfinite-difference time-domain method, Fourier optics, near-field optical disk, nanostructure,en
dc.relation.page104
dc.rights.note未授權
dc.date.accepted2007-01-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved