請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25489完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊泮池 | |
| dc.contributor.author | Ting-Rong Chern | en |
| dc.contributor.author | 陳庭榕 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:15:33Z | - |
| dc.date.copyright | 2007-02-13 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-01-30 | |
| dc.identifier.citation | 1. Drews, J. Drug discovery: a historical perspective. Science 2000, 287, 1960-4.
2. Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Anticancer and antiviral sulfonamides. Curr Med Chem 2003, 10, 925-53. 3. Yoshino, H.; Ueda, N.; Niijima, J.; Sugumi, H.; Kotake, Y.; Koyanagi, N.; Yoshimatsu, K.; Asada, M.; Watanabe, T.; Nagasu, T.; et al. Novel sulfonamides as potential, systemically active antitumor agents. J Med Chem 1992, 35, 2496-7. 4. Yoshimatsu, K.; Yamaguchi, A.; Yoshino, H.; Koyanagi, N.; Kitoh, K. Mechanism of action of E7010, an orally active sulfonamide antitumor agent: inhibition of mitosis by binding to the colchicine site of tubulin. Cancer Res 1997, 57, 3208-13. 5. Owa, T.; Yoshino, H.; Okauchi, T.; Yoshimatsu, K.; Ozawa, Y.; Sugi, N. H.; Nagasu, T.; Koyanagi, N.; Kitoh, K. Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J Med Chem 1999, 42, 3789-99. 6. Chen, K.–Y. (陳冠妤) MS thesis, National Taiwan University, Taipei, R O C, 2001. 7. Davis, S. T.; Benson, B. G.; Bramson, H. N.; Chapman, D. E.; Dickerson, S. H.; Dold, K. M.; Eberwein, D. J.; Edelstein, M.; Frye, S. V.; Gampe Jr, R. T.; Griffin, R. J.; Harris, P. A.; Hassell, A. M.; Holmes, W. D.; Hunter, R. N.; Knick, V. B.; Lackey, K.; Lovejoy, B.; Luzzio, M. J.; Murray, D.; Parker, P.; Rocque, W. J.; Shewchuk, L.; Veal, J. M.; Walker, D. H.; Kuyper, L. F. Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors. Science 2001, 291, 134-7. 8. Chein, S.–Y. (簡修瑜) MS thesis, National Taiwan University, Taipei, R O C, 2001. 9. Jordan, M. A.; Wilson, L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004, 4, 253-65. 10. Tron, G. C.; Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. Medicinal chemistry of combretastatin A4: present and future directions. J Med Chem 2006, 49, 3033-44. 11. Walker, N. I.; Harmon, B. V.; Gobe, G. C.; Kerr, J. F. Patterns of cell death. Methods Achiev Exp Pathol 1988, 13, 18-54. 12. Nicotera, P.; Melino, G. Regulation of the apoptosis-necrosis switch. Oncogene 2004, 23, 2757-65. 13. Jaattela, M. Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 2004, 23, 2746-56. 14. Kroemer, G.; Jaattela, M. Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005, 5, 886-97. 15. Kroemer, G.; Martin, S. J. Caspase-independent cell death. Nat Med 2005, 11, 725-30. 16. Mathiasen, I. S.; Jaattela, M. Triggering caspase-independent cell death to combat cancer. Trends Mol Med 2002, 8, 212-20. 17. Cory, S.; Adams, J. M. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2002, 2, 647-56. 18. Wei, M. C.; Zong, W. X.; Cheng, E. H.; Lindsten, T.; Panoutsakopoulou, V.; Ross, A. J.; Roth, K. A.; MacGregor, G. R.; Thompson, C. B.; Korsmeyer, S. J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 2001, 292, 727-30. 19. Willis, S. N.; Chen, L.; Dewson, G.; Wei, A.; Naik, E.; Fletcher, J. I.; Adams, J. M.; Huang, D. C. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 2005, 19, 1294-305. 20. Kim, H.; Rafiuddin-Shah, M.; Tu, H. C.; Jeffers, J. R.; Zambetti, G. P.; Hsieh, J. J.; Cheng, E. H. Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 2006, 8, 1348-58. 21. Salvesen, G. S.; Duckett, C. S. IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol 2002, 3, 401-10. 22. Li, F.; Ambrosini, G.; Chu, E. Y.; Plescia, J.; Tognin, S.; Marchisio, P. C.; Altieri, D. C. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 1998, 396, 580-4. 23. Wang, H. W.; Sharp, T. V.; Koumi, A.; Koentges, G.; Boshoff, C. Characterization of an anti-apoptotic glycoprotein encoded by Kaposi's sarcoma-associated herpesvirus which resembles a spliced variant of human survivin. Embo J 2002, 21, 2602-15. 24. Altieri, D. C. Validating survivin as a cancer therapeutic target. Nat Rev Cancer 2003, 3, 46-54. 25. Zaffaroni, N.; Pennati, M.; Colella, G.; Perego, P.; Supino, R.; Gatti, L.; Pilotti, S.; Zunino, F.; Daidone, M. G. Expression of the anti-apoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell Mol Life Sci 2002, 59, 1406-12. 26. Zhou, M.; Gu, L.; Li, F.; Zhu, Y.; Woods, W. G.; Findley, H. W. DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J Pharmacol Exp Ther 2002, 303, 124-31. 27. Vousden, K. H.; Lu, X. Live or let die: the cell's response to p53. Nat Rev Cancer 2002, 2, 594-604. 28. Vogelstein, B.; Lane, D.; Levine, A. J. Surfing the p53 network. Nature 2000, 408, 307-10. 29. Fridman, J. S.; Lowe, S. W. Control of apoptosis by p53. Oncogene 2003, 22, 9030-40. 30. Soengas, M. S.; Alarcon, R. M.; Yoshida, H.; Giaccia, A. J.; Hakem, R.; Mak, T. W.; Lowe, S. W. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 1999, 284, 156-9. 31. Moroni, M. C.; Hickman, E. S.; Lazzerini Denchi, E.; Caprara, G.; Colli, E.; Cecconi, F.; Muller, H.; Helin, K. Apaf-1 is a transcriptional target for E2F and p53. Nat Cell Biol 2001, 3, 552-8. 32. MacLachlan, T. K.; El-Deiry, W. S. Apoptotic threshold is lowered by p53 transactivation of caspase-6. Proc Natl Acad Sci U S A 2002, 99, 9492-7. 33. Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H. G.; Lin, H. K.; Liebermann, D. A.; Hoffman, B.; Reed, J. C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 1994, 9, 1799-805. 34. Jeffers, J. R.; Parganas, E.; Lee, Y.; Yang, C.; Wang, J.; Brennan, J.; MacLean, K. H.; Han, J.; Chittenden, T.; Ihle, J. N.; McKinnon, P. J.; Cleveland, J. L.; Zambetti, G. P. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 2003, 4, 321-8. 35. Oda, E.; Ohki, R.; Murasawa, H.; Nemoto, J.; Shibue, T.; Yamashita, T.; Tokino, T.; Taniguchi, T.; Tanaka, N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000, 288, 1053-8. 36. Jiang, P.; Du, W.; Heese, K.; Wu, M. The Bad guy cooperates with good cop p53: Bad is transcriptionally up-regulated by p53 and forms a Bad/p53 complex at the mitochondria to induce apoptosis. Mol Cell Biol 2006, 26, 9071-82. 37. Owen-Schaub, L. B.; Zhang, W.; Cusack, J. C.; Angelo, L. S.; Santee, S. M.; Fujiwara, T.; Roth, J. A.; Deisseroth, A. B.; Zhang, W. W.; Kruzel, E.; et al. Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression. Mol Cell Biol 1995, 15, 3032-40. 38. Wu, G. S.; Burns, T. F.; McDonald, E. R., 3rd; Jiang, W.; Meng, R.; Krantz, I. D.; Kao, G.; Gan, D. D.; Zhou, J. Y.; Muschel, R.; Hamilton, S. R.; Spinner, N. B.; Markowitz, S.; Wu, G.; el-Deiry, W. S. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat Genet 1997, 17, 141-3. 39. Liu, X.; Yue, P.; Khuri, F. R.; Sun, S. Y. p53 upregulates death receptor 4 expression through an intronic p53 binding site. Cancer Res 2004, 64, 5078-83. 40. Sax, J. K.; El-Deiry, W. S. p53 downstream targets and chemosensitivity. Cell Death Differ 2003, 10, 413-7. 41. Zhang, C. C.; Yang, J. M.; Bash-Babula, J.; White, E.; Murphy, M.; Levine, A. J.; Hait, W. N. DNA damage increases sensitivity to vinca alkaloids and decreases sensitivity to taxanes through p53-dependent repression of microtubule-associated protein 4. Cancer Res 1999, 59, 3663-70. 42. Murphy, M.; Ahn, J.; Walker, K. K.; Hoffman, W. H.; Evans, R. M.; Levine, A. J.; George, D. L. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 1999, 13, 2490-501. 43. Hoffman, W. H.; Biade, S.; Zilfou, J. T.; Chen, J.; Murphy, M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem 2002, 277, 3247-57. 44. Mihara, M.; Erster, S.; Zaika, A.; Petrenko, O.; Chittenden, T.; Pancoska, P.; Moll, U. M. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003, 11, 577-90. 45. Wahl, A. F.; Donaldson, K. L.; Fairchild, C.; Lee, F. Y.; Foster, S. A.; Demers, G. W.; Galloway, D. A. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 1996, 2, 72-9. 46. Perez-Stable, C. 2-Methoxyestradiol and paclitaxel have similar effects on the cell cycle and induction of apoptosis in prostate cancer cells. Cancer Lett 2006, 231, 49-64. 47. Shimada, K.; Nakamura, M.; Ishida, E.; Kishi, M.; Konishi, N. Roles of p38- and c-jun NH2-terminal kinase-mediated pathways in 2-methoxyestradiol-induced p53 induction and apoptosis. Carcinogenesis 2003, 24, 1067-75. 48. Mukhopadhyay, T.; Roth, J. A. Superinduction of wild-type p53 protein after 2-methoxyestradiol treatment of Ad5p53-transduced cells induces tumor cell apoptosis. Oncogene 1998, 17, 241-6. 49. Murphy, M.; Hinman, A.; Levine, A. J. Wild-type p53 negatively regulates the expression of a microtubule-associated protein. Genes Dev 1996, 10, 2971-80. 50. Zhang, C. C.; Yang, J. M.; White, E.; Murphy, M.; Levine, A.; Hait, W. N. The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene 1998, 16, 1617-24. 51. Castedo, M.; Perfettini, J. L.; Roumier, T.; Andreau, K.; Medema, R.; Kroemer, G. Cell death by mitotic catastrophe: a molecular definition. Oncogene 2004, 23, 2825-37. 52. Tsuiki, H.; Nitta, M.; Tada, M.; Inagaki, M.; Ushio, Y.; Saya, H. Mechanism of hyperploid cell formation induced by microtubule inhibiting drug in glioma cell lines. Oncogene 2001, 20, 420-9. 53. Lanni, J. S.; Jacks, T. Characterization of the p53-dependent postmitotic checkpoint following spindle disruption. Mol Cell Biol 1998, 18, 1055-64. 54. Chen, J. G.; Yang, C. P.; Cammer, M.; Horwitz, S. B. Gene expression and mitotic exit induced by microtubule-stabilizing drugs. Cancer Res 2003, 63, 7891-9. 55. Brito, D. A.; Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr Biol 2006, 16, 1194-200. 56. Klein, L. E.; Freeze, B. S.; Smith, A. B., 3rd; Horwitz, S. B. The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence. Cell Cycle 2005, 4, 501-7. 57. Castedo, M.; Coquelle, A.; Vivet, S.; Vitale, I.; Kauffmann, A.; Dessen, P.; Pequignot, M. O.; Casares, N.; Valent, A.; Mouhamad, S.; Schmitt, E.; Modjtahedi, N.; Vainchenker, W.; Zitvogel, L.; Lazar, V.; Garrido, C.; Kroemer, G. Apoptosis regulation in tetraploid cancer cells. Embo J 2006, 25, 2584-95. 58. Taylor, W. R.; Stark, G. R. Regulation of the G2/M transition by p53. Oncogene 2001, 20, 1803-15. 59. Di Bartolomeo, S.; Di Sano, F.; Piacentini, M.; Spinedi, A. Apoptosis induced by doxorubicin in neurotumor cells is divorced from drug effects on ceramide accumulation and may involve cell cycle-dependent caspase activation. J Neurochem 2000, 75, 532-9. 60. Shiah, H. S.; Lee, W. S.; Juang, S. H.; Hong, P. C.; Lung, C. C.; Chang, C. J.; Chou, K. M.; Chang, J. Y. Mitochondria-mediated and p53-associated apoptosis induced in human cancer cells by a novel selenophene derivative, D-501036. Biochem Pharmacol 2006. 61. Schimke, R. T.; Kung, A.; Sherwood, S. S.; Sheridan, J.; Sharma, R. Life, death and genomic change in perturbed cell cycles. Philos Trans R Soc Lond B Biol Sci 1994, 345, 311-7. 62. Oricchio, E.; Saladino, C.; Iacovelli, S.; Soddu, S.; Cundari, E. ATM is activated by default in mitosis, localizes at centrosomes and monitors mitotic spindle integrity. Cell Cycle 2006, 5, 88-92. 63. Vogel, C.; Kienitz, A.; Hofmann, I.; Muller, R.; Bastians, H. Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 2004, 23, 6845-53. 64. Gottesfeld, J. M.; Forbes, D. J. Mitotic repression of the transcriptional machinery. Trends Biochem Sci 1997, 22, 197-202. 65. Martinez-Balbas, M. A.; Dey, A.; Rabindran, S. K.; Ozato, K.; Wu, C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 1995, 83, 29-38. 66. Blagosklonny, M. V.; Demidenko, Z. N.; Fojo, T. Inhibition of transcription results in accumulation of Wt p53 followed by delayed outburst of p53-inducible proteins: p53 as a sensor of transcriptional integrity. Cell Cycle 2002, 1, 67-74. 67. Bhalla, K. N. Microtubule-targeted anticancer agents and apoptosis. Oncogene 2003, 22, 9075-86. 68. Gross, A.; McDonnell, J. M.; Korsmeyer, S. J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999, 13, 1899-911. 69. Scatena, C. D.; Stewart, Z. A.; Mays, D.; Tang, L. J.; Keefer, C. J.; Leach, S. D.; Pietenpol, J. A. Mitotic phosphorylation of Bcl-2 during normal cell cycle progression and Taxol-induced growth arrest. J Biol Chem 1998, 273, 30777-84. 70. Nijhawan, D.; Fang, M.; Traer, E.; Zhong, Q.; Gao, W.; Du, F.; Wang, X. Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation. Genes Dev 2003, 17, 1475-86. 71. Song, L.; Coppola, D.; Livingston, S.; Cress, D.; Haura, E. B. Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther 2005, 4, 267-76. 72. Zha, J.; Harada, H.; Yang, E.; Jockel, J.; Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell 1996, 87, 619-28. 73. Condorelli, F.; Salomoni, P.; Cotteret, S.; Cesi, V.; Srinivasula, S. M.; Alnemri, E. S.; Calabretta, B. Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol Cell Biol 2001, 21, 3025-36. 74. Chipuk, J. E.; Bouchier-Hayes, L.; Kuwana, T.; Newmeyer, D. D.; Green, D. R. PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 2005, 309, 1732-5. 75. Rosa, J.; Canovas, P.; Islam, A.; Altieri, D. C.; Doxsey, S. J. Survivin modulates microtubule dynamics and nucleation throughout the cell cycle. Mol Biol Cell 2006, 17, 1483-93. 76. O'Connor, D. S.; Grossman, D.; Plescia, J.; Li, F.; Zhang, H.; Villa, A.; Tognin, S.; Marchisio, P. C.; Altieri, D. C. Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc Natl Acad Sci U S A 2000, 97, 13103-7. 77. Monzo, M.; Rosell, R.; Felip, E.; Astudillo, J.; Sanchez, J. J.; Maestre, J.; Martin, C.; Font, A.; Barnadas, A.; Abad, A. A novel anti-apoptosis gene: Re-expression of survivin messenger RNA as a prognosis marker in non-small-cell lung cancers. J Clin Oncol 1999, 17, 2100-4. 78. Ambrosini, G.; Adida, C.; Sirugo, G.; Altieri, D. C. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J Biol Chem 1998, 273, 11177-82. 79. Yuan, X. M.; Li, W.; Dalen, H.; Lotem, J.; Kama, R.; Sachs, L.; Brunk, U. T. Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci U S A 2002, 99, 6286-91. 80. Broker, L. E.; Huisman, C.; Span, S. W.; Rodriguez, J. A.; Kruyt, F. A.; Giaccone, G. Cathepsin B mediates caspase-independent cell death induced by microtubule stabilizing agents in non-small cell lung cancer cells. Cancer Res 2004, 64, 27-30. 81. Cirman, T.; Oresic, K.; Mazovec, G. D.; Turk, V.; Reed, J. C.; Myers, R. M.; Salvesen, G. S.; Turk, B. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 2004, 279, 3578-87. 82. Foghsgaard, L.; Wissing, D.; Mauch, D.; Lademann, U.; Bastholm, L.; Boes, M.; Elling, F.; Leist, M.; Jaattela, M. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 2001, 153, 999-1010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25489 | - |
| dc.description.abstract | 本論文主旨為探討苯磺醯胺衍生物J-3944對非小型細胞肺癌細胞A549之抗癌活性機轉。本實驗室所設計合成之benzenesulfonamidoindolinone類衍生物,最初目的為設計CDK2抑制劑作為抗癌化合物,然而,其抑制細胞生長的活性大於其抑制CDK2的活性,因此推測其抑制癌細胞生長的活性除對CDK2之抑制外,另有其它的機制。本論文進而研究其抗癌機制,J-3944對於各種腫瘤細胞均有不錯的生長抑制活性,其中以對A549細胞之效果最好(GI50 = 0.07μM),流式細胞儀分析發現J-3944 會使A549 細胞停滯在G2/M 時期,TUNEL 實驗顯示細胞凋亡現象。經由共軛焦顯微鏡觀察到細胞於J-3944 的作用下呈現類似colchicine 的短而內聚的微小管形態。體外微小管聚合實驗及競爭結合colchicine 結合位置實驗顯示J-3944 會結合於colchicine 結合位置並抑制微小管的聚合。西方點墨法觀察發現,細胞週期相關蛋白MPM2、cyclin B1 的表現量在3 - 12 小時增加,造成M 時期的停滯。但在18 小時後MPM2 的表現量消失,顯示細胞有mitotic slippage 的現象並成為tetraploid 形態的細胞。而A549 細胞在J-3944 的作用下,p53 的表現量亦有大量增加的現象,調控之Bcl-2 家族中促凋亡蛋白PUMA、Bad、Bax 因受p53 誘導而表現量增加,同時,抑凋蛋白Mcl-1 也有減少的現象。這些變化促使粒線體通透性改變而釋放出cytochrom c,進一步活化caspase-3、9 而導致內生性路徑之細胞凋亡。Survivin 則扮演著兩種角色,在有絲分裂停滯時期表現量上升,與參與紡綞體形成之調控有關,在mitotic slippage 之後,其表現量則下降可促進細胞凋亡的進行。Cathepsin B 的裂解活化型式亦有增加,可能參與細胞凋亡的進行。 | zh_TW |
| dc.description.abstract | The aim of this thesis is to investigate the anticancer mechanism of J-3944, benzenesulfonamide, against the non-small cell lung cancer A549. J-3944 is a benzenesulfonamidoindolinone, a small molecule designed and synthesized in our laboratory as an anticancer agent. It is origionally designed as a CDK2 inhibitor for anticancer agents. However, it was found that the inhibitory growth activity of cancer cells was much more pronounced than its enzymatic activity against CDK2, indicative of other mechanisms involved for the inhibitory activity aside from the CDK2 inhibitory activity. Further investigation by this research revealed that J-3944 exhibited potent inhibitory activity against various human cancer cell lines, especially the invasive human lung cancer A549 cell line (GI50 = 0.07 μM). The flow cytometric cell cycle analysis of J-3944 on A549 cell lines showed G2/M arrest. The TUNEL assay confirmed an apoptosis. The confocol microsope showed that J-3944 resulted in shorter microtubule scatter around necleous in A549 cell. The microtubule assembly assay and tubulin competition-binding SPA assay revealed J-3944 as a microtubule inhibitor and through binding to the colchicines binding site. Results of Western blotting showed an increased expression of some mitotic marker protein like MPM-2 and cyclin B1 during 3 to 12 hr indicating that cells entered and blocked at mitotic phase. The expression of p53 was significantly increased after treatment. The pro-apoptotic proteins of Bcl-2 family, PUMA、Bad、Bax, were induced by p53. Meanwhile, the expression of anti-apoptotic protein of Bcl-2 family: Mcl-1 was decreased. The net-effenct of thoese Bcl-2 family proteins caused mitochondrial outer membrane permeabilization and subcequently the release of cytochrome c. Furhter, the activation of caspase-3 and 9 triggered apoptosis. Survivin played a dual role in up-regulated when cell arrested at M phase because it participated in the spindle formation and down-regulated following mitotic arrest indicating its IAPs function. We also found that increased expression of active cleaved form of cathepsin B might be involved in apoptosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:15:33Z (GMT). No. of bitstreams: 1 ntu-96-R93423026-1.pdf: 1426865 bytes, checksum: 3a91e36dfadd0763833939d574779c94 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 抗微小管藥物與癌症的治療 2 1.2.2 細胞死亡 3 1.2.3 影響細胞凋亡相關調控因子 4 第二章 實驗材料與方法 8 2.1 實驗材料 8 2.2 培養液的製備 9 2.3 解凍細胞、細胞繼代與培養 9 2.4 Sulforhodamine B (SRB) assay 10 2.5 細胞總量蛋白質的萃取 11 2.6 分離Mitochondria/Cytosol蛋白質 11 2.7 西方墨點法 12 2.8 TUNEL檢測法偵測細胞凋亡 13 2.9 共軛焦顯微鏡螢光染色法 14 2.10 流式細胞儀測定細胞週期及細胞凋亡 14 2.11 In Vitro 微小管聚合實驗 15 2.12 Colchicine及Tubulin Competition-Binding SPA 15 2.13 Caspase活性分析 15 第三章 結果 17 3.1 J-3944對人類癌症細胞株生長抑制效果 17 3.2 J-3944對人類肺癌細胞A549生長週期的影響 17 3.3 J-3944誘導人類肺癌細胞A549進行DNA斷裂 18 3.4 J-3944對體外微小管聚合的影響 18 3.5 J-3944對微小管Colchicine結合位置的影響 19 3.6 J-3944對人類肺癌細胞A549的微小管形態之影響 19 3.7 J-3944對人類肺癌細胞A549細胞週期相關蛋白的影響 20 3.8 J-3944對人類肺癌細胞A549的p53及其相關蛋白之影響 20 3.9 J-3944對人類肺癌細胞A549之Bcl-2 family蛋白影響 21 3.10 J-3944引起人類肺癌細胞A549粒線體cytochrome c和AIF釋放 21 3.11 J-3944對人類肺癌細胞A549中caspase活性之影響 22 3.12 J-3944對人類肺癌細胞A549的IAPs蛋白表現影響 22 3.13 J-3944對人類肺癌細胞A549外生性細胞凋亡路徑影響 23 3.14 J-3944對人類肺癌細胞A549的Cathepsins影響 23 第四章 討論 24 4.1 J-3944對腫瘤細胞之生長抑制效果 24 4.2 J-3944使A549細胞進入Mitotic Arrest 25 4.3 J-3944引發A549細胞進行細胞凋亡 26 4.4 J-3944引發A549細胞p53表現量上升 26 4.5 J-3944引發A549細胞內生性細胞凋亡路徑 28 4.6 J-3944對Survivin的調控 30 4.7 J-3944引發A549細胞Cathepsin B的活化 31 第五章 結論 33 參考文獻 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | 微小管 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | p53 | zh_TW |
| dc.subject | lung cancer | en |
| dc.subject | p53 | en |
| dc.subject | apoptosis | en |
| dc.subject | microtubule | en |
| dc.title | Benzenesulfonamidoindolinone衍生物J-3944對人類非小細胞肺癌細胞A549抗癌活性機轉研究 | zh_TW |
| dc.title | Mechanistic Studies of Benzenesulfonamidoindolinone Derivative J-3944 against Human Non-small Cell Lung Cancer A549 Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顧記華,陳香惠,忻凌偉,孔繁璐 | |
| dc.subject.keyword | 微小管,細胞凋亡,p53,肺癌, | zh_TW |
| dc.subject.keyword | microtubule,apoptosis,p53,lung cancer, | en |
| dc.relation.page | 61 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-01-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥學研究所 | zh_TW |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
