請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25454
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴凌平(Ling-Ping Lai) | |
dc.contributor.author | Yao-Jen Liang | en |
dc.contributor.author | 梁耀仁 | zh_TW |
dc.date.accessioned | 2021-06-08T06:14:06Z | - |
dc.date.copyright | 2007-06-23 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-04-20 | |
dc.identifier.citation | Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997;336:1066-71.
Banes AK, Watts SW. Upregulation of arterial serotonin 1B and 2B receptors in deoxycorticosterone acetate-salt hypertension. Hypertension 2002;39:394-8. Bang R, Marnell L, Mold C, Stein MP, Clos KT, Chivington-Buck C, et al. Analysis of binding sites in human C-reactive protein for Fcgamma RI, Fcgamma RIIa and C1q by site-directed mutagenesis. J Biol Chem 2005;280:25095-102. Beckman JA, Creager MA. The nonlipid effects of statins on endothelial function. Trends Cardiovasc Med 2006;16:156-62. Bharadwaj D, Stein MP, Volzer M, Mold C, Du Clos TW. The major receptor for C-reactive protein on leukocytes is Fcgamma receptor II. J Exp Med 1999;190:585-90. Bianchi P, Pimental DR, Murphy MP, Colucci WS, Parini A. A new hypertrophic mechanism of serotonin in cardiac myocytes: receptor-independent ROS generation. FASEB J 2005;6:641-3 Blake GJ, Ridker PM. C-reactive protein and other inflammatory risk markers in acute coronary syndromes. J Am Coll Cardiol 2003;41:37S-42S. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998;394:894–7. Brand K, Page S, Rogler G, Bartsch A, Brandl R, Knuechel R, et al. Activated transcription factor nuclear factor-kappa B is presen t in the atherosclerotic lesion. J Clin Invest 1996;97:1715-22. Brown MS, Faust JR, Goldstein JL. Induction of 3-hydroxyl-3-methylglutaryl coenzyme A reductase activity in human fibroblasts incubated with compactin (ML-236B), a competitive inhibitor of the reductase. J Biol Chem 1978;253:1121-8. Brummelkamp TR, Bernard R, Agami R. A system for stable expression of short interfering RNAs in mammalial cells. Science 2002;296:550-3. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res 2003;11:1278-89. Carlsen H, Alexander G, Austenaa LM, Ebihara K, Blomhoff R. Molecular imaging of the transcription factor NF-kappaB, a primary regulator of stress response. Mutat Res 2004;551:199-211. Calabro P, Willerson JT, Yeh ET. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells. Circulation 2003;108:1039-51. Cao C, Han JH, Kim SZ, Cho KW, Kim SH. Diverse regulation of atrial natriuretic peptide secretion by serotonin receptor subtypes. Cardiovasc Res 2003;59:360-8. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclial strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension 1996;28:386-91. Choi DS. 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development 1997:124;1745-55. Choi DS, Maroteaux L. Immunohistochemical localization of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 1996;391:45-51. Colhoun HM, Betteridge DJ, Durrington PN, Hitman GA, Neil HA, Livingstone SJ, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomized placebo-controlled trial. Lancet 2004;94:685-96. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 2004;350:1387-97. De Beer FC, Hind CR, Fox KM, Allan RM, Maseri A, Pepys MB. Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br Heart J 1982;47:239-43. De Martin R, Hoeth M, Hofer-Warbinek R, Schmid JA. The transcription factor NF-κB and the regulation of vascular cell function. Aterioscler Thromb Vasc Biol 2000;20:E83-8. Devaraj S, Xu DY, Jialal I. C-reactive protein increases plasminogen activator inhibitor-1 expression and activity in human aortic endothelial cells: implications for the metabolic syndrome and atherothrombosis. Circulation 2003;107:398-404. Devaraj S, Davis B, Simon SI, Jialal I. CRP promotes monocyte-endothelial cell adhesion via Fcgamma receptors in human aortic endothelial cells under static and shear flow conditions. Am J Physiol Heart Circ Physiol 2006;291:H1170-6. Devaraj S, Du Clos TW, Jialal I. Binding and internalization of C-reactive protein by Fcgamma receptors on human aortic endothelial cells mediates biological effects. Arterioscler Thromb Vasc Biol 2005;25:1359-63. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002;8:1249-56. Endo A, Kuroda M, Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by penicillium citrinum. J Antibiot 1976;29:1346. Favaloro EJ. Differential expression of surface antigens on activated endothelium. Immunol Cell Biol 1993;71:571-81. Ferran C, Millan MT, Csizmadia V, Cooper JT, Brostjan C, Bach FH, Winkler H. Inhibition of NF-kappa B by pyrolidine dithiocarbamate blocks endothelial cell activation. Biochem Biophys Res Commun 1995; 214(1):212-23. Fichtlscher S, Rosenberger G, Walter DH, Breuer S, Dimmeler S, Zeiher AM. Elevated C-reactive protein levels and impaired endothelial vasoreactivity in patients with coronary artery disease. Circulation 2000;102:1000-6. Fire, A. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 1998;391:806–11. Frishman WH, Grewall P. Serotonin and the heart. Ann Med 2000;32:195–209. Francine C, Cecile F, Yves F, Jacques M, Guilan V. Recent advances in understanding serotonin regulation of cardiovascular function. Trends in Mol Med 2004;10:232-8. Furset G, Sioud M. Design of bifunctional siRNAs: combining immunostimulation and gene-silencing in one single siRNA molecule. Biochem Biophys Res Commun 2007;352:642-9. Gardner DG. Natriuretic peptides: markers or modulators of cardiac hypertrophy. Trends Endocrinol Metabol 2003;14:411-6. Goode TB, Davies PF, Reidy MA, Bowyer DE. Aortic endothelial cell morphology observed in situ by scanning electron microscopy during atherogenesis in the rabbit. Atherosclerosis 1977;27:235-51. Hannon, G.J. RNA interference. Nature 2002;418:244–51. Hansson GK. Immune mechanisms in atherosclerosis. Arterioscler Thromb Vasc Biol 2001;21:1876-90. Hattori Y, Matsumura M, Kasai K. Vascular smooth muscle activation by C-reactive protein. Cardiovasc Res 2003;58:186-95. Hillyard DZ, Cameron AJ, McDonald KJ, Thomson J, MacIntyre A, Shiels PG, et al. Simvastatin inhibits lymphocyte function in normal subjects and patients with cardiovascular disease. Atherosclerosis 2004;175:305-13. Hogarth PM. Fc receptors are major mediators of antibody based inflammation in autoimmunity. Curr Opin Immunol 2002;14:798-802. Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002;71:533–54. Hubbard AK, Rothlein R. Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med 2000; 28:1379-86. Hutvagner G, Zamore PD. A microRNA in a multipleturnover RNAi enzyme complex. Science 2002;297:2056–60 Ido Y, Yagihashi N, Cacicedo JM, Ruderman NR. AMPkinase activation prevents TNF-alpha induced ICAM expression by inhibiting NF-κB transactivation but not by inhibiting their translocation or DNA-binding. Diabetes 2002;51:A458. Irukayama-Tomobe Y, Miyauchi T, Sakai S, Kasuya Y, Ogata T, Takanashi M, et al. Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-α partly via blockade of c-Jun NH2-terminal kinase pathway. Circulation 2004;109:904-10. Jacob BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev 1992;72:165-229. Jaffre F, Callebert J, S Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000;18:621-63. Jaffre F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay JM. Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation. Control of Interleukin-6, Interleukin-1B, and tumor necrosis factor-a cytokine production by ventricular fibroblasts. Circulation 2004;110:969-74. Kagaya A, Mikuni M, Kusumi I, Yamamoto H, Takahashi K. Serotonin-induced acute desensitization of serotonin2 receptors in human platelets via a mechanism involving protein kinase C. J Pharmacol Exp Ther 1990;255:305-11. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol 2000;18:621-63. Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Saito T, et al. C-reactive protein induces VCAM-1 gene expression through NF-κB activation in vascular endothelial cells. Atherosclerosis 2006;185:39-46. Kawakami A, Aikawa M, Alcaide P, Luscinskas FW, Libby P, Sacks FM. Apolipoprotein CIII induces expression of vascular cell adhesion molecule-1 in vascular endothelial cells and increases adhesion of monocytic cells. Circulation 2006;114:681-7. Kennett GA, Trail B, Riley G, Bickerdike MJ, Ranson J, Forbes IT, et al. SB215505, a selective 5-HT2B receptor antagonist in rats. Soc Neurosci Abstr 1998:24;541.12. Kerkela R, Woulfe K, Force T. Glycogen synthase kinase-3beta-actively inhibiting hypertrophy. Trends Cardiovasc Med 2007;17:91-6. Kobayashi S, Inoue N, Ohashi Y, Terashima M, Matsui K, Mori T, et al. Interaction of oxidative stress and inflammatory response in coronary plaque instability: important role of C-reactive protein. Arterioscler Thromb Vasc Biol 2003;23:1398-404. Komuro I, Kaida T, Shibazaki Y, Kurabayashi M, Katoh Y, Hoh E, Takaku F, Yazaki Y. Stretching cardiac myocytes stimulates protooncogene expression. J Biol Chem 1990;265:3595-8. Landry DB, Couper LL, Bryant SR, Lindner V. Activation of the NF-κB and IκB system in smooth muscle cells after rat aterial injury: induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am J Pathol 1997;151:1085-95. Launay JM, Birraux G, Bondoux D, Callebert J, Choi DS, Loric S, et al. Ras involvement in signal transduction by the serotonin 5-HT2B receptor. J Biol Chem 1996;271:3141–7. Launay JM, Herve P, Peoch K, Tournois C, Callebert J, Nebigil CG, et al. Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension. Nat Med 2002;8:1129-36. Lee RT, Libby P. The unstable atheroma. Arterioscler Thromb Vasc Biol 1997;17:1859-67. Liang F, Gardner DG. Mechanical strain activates BNP gene transcription through a p38/ NF-κB-dependent mechanism. J Clin Invest 1999:104;1603-12. Liang YJ, Shyu KG, Wang BW, Lai LP. C-reactive protein activates the nuclear factor -κB pathway and induces vascular cell adhesion molecule-1 expression through CD32 in human umbilical vein endothelial cells and aortic endothelial cells. J Mol Cell Cardio 2006;40:412-20. Liao JK. Statin therapy for cardiac hypertrophy and heart failure. J Investig Med 2004;52:248-53. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868–74. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002;105:1135–43. Lin R, Liu J, Peng N, Yang G Gan W, Wang W. Lovastatin reduces nuclear factor kappaB activation induced by C-reactive protein in human vascular endothelial cells. Biol Pharm Bull 2005;28:1630-4. Li X, Liu L, Tupper JC, Bannerman DD, Winn RK, Sebti SM, et al. Inhibition of protein geranylgeranylation and RhoA/RhoA kinase pathway induces apoptosis in human endothelial cells. J Biol Chem 2002;277:15309-16. Maack C, Kartes T, Kilter H, Schafers HJ, Nickenig G, Bohm M, et al. Oxygen free radical release in human failing myocardium is associated with increased activity of Rac1-GTPase and represents a target for statin treatment. Circulation 2003;108:1567-74. Mahmoudi M, Curzen N, Gallagher PJ. Atherogenesis: the role of inflammation and infection. Histopathology 2007;50:535-46. Manning PJ. Thyroid gland and arterial lesions of Beagles with familial hypothyroidism and hyperlipoproteinemia. Am J Vet Res 1979;40:820-8. Manolov DE, Rocker C, Hombach V, Nienhaus GU, Torzewski J. Ultrasensitive confocal fluorescence microscopy of C-reactive protein interacting with FcgammaRIIa. Arterioscler Thromb Vasc Biol 2004;24:2372-7. Maron BJ. Hypertrophic cardiomyopathy. Curr Probl Cardiol 1993;18:639-704. Mellion MB, Team Physician's handbook (3rd ed.). Hanley & Belfu, 2002. Morgan HE, Baker KM. Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 1991;83:13-25. Natarajan K, Singh S, Burke TR Jr, Grunberger D, Aggarwal BB. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc Natl Acad Sci U S A 1996;93:9090-5. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002;106:3121–43. Nebigil CG, Choi D-S, Dierich A, Hickle P, Le Meur M, Messaddeq N, et al. Serotonin 2B receptor is required for heart development. Proc Natl Acad Sci U S A 2000;97:9508–13. Nebigil CG, Etienne N, Schaerlinger B, Hickel P, Launay JM, Maroteaux L. Developmentally regulated serotonin 5-HT2B receptors. Int J Dev Neurosci 2001;19:365–72. Nebigil CG, Etienne N, Messaddeq N, Maroteaux L. Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a direct of 5-HT2B-receptor signaling. FASEB J 2003;17:1373–5. Nebigil CG, Hickel P, Messaddeq N, Vonesch JL, Douchet MP, Monassier L, et al. Ablation of serotonin 5-HT2B receptors in mice leads to abnormal cardiac structure and function. Circulation 2001;103:2973–9. Nebigil CG, Maroteaux L. Functional consequence of serotonin/5-HT2B receptor signaling in heart: role of mitochondria in transition between hypertrophy and heart failure? Circulation 2003;108:902-8 Ogata T, Miyauchi T, Sakai S, Takanashi M, Irukayama-Tomobe Y, Yamaguchi I. Myocardial fibrosis and diastolic dysfunction in deoxycorticosterone acetate-salt hypertensive rats is ameliorated by the peroxisome proliferator-activated receptor-alpha activator fenofibrate, partly by suppressing inflammatory responses associated with the nuclear factor-kappa-B pathway. J Am Coll Cardiol 2004;43:1481-8. Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999;18:6853-66. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sci U S A 2000;97:931–6. Pasceri V, Chang JS, Willerson JT, Yeh ET. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 2001;103:2531-4. Pasceri V, Willerson JT, Yeh ET. Direct pro-inflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102:2165-8. Paul A, Ko KW, Li L, Yechoor V, McCrory MA, Szalai AJ, et al. C-reactive protein accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. Circulation 2004;109:647-55. Paul ES, Wang CH, Weisel RD, de Almeida JR, Anderson TJ; Verma S. New Markers of Inflammation and Endothelial Cell Activation. Circulation 2003;108:1917-23 Perkins ND. The Rel/NF-kappa B family: friend and foe. Trends Biochem Sci 2000;25:434-40. Pfeiffer JR, Howes PS, Waters MA, Hynes ML, Schnurr PP, Demidenko E, et al. Levels of expression of Fcγ receptor ⅡA (CD32) are decreased on peripheral blood monocytes in patients with severe atherosclerosis. Atherosclerosis 2001;155:211-8. Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 2001;89:453-60. Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 2000;342:836–43. Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002;347:1557-65. Rikitake Y, Liao JK. Rho GTPases, statins and nitric oxide. Circ Res 2005;97:1232-5. Riou S, Mees B, Esposito B, Merval R, Vilar J, Stengel D, et al. High Pressure Promotes Monocyte Adhesion to the Vascular Wall. Circ Res 2007; [Epub ahead of print]. Robbins & Cotran. Pathologic Basis of Diease. (7th ed) McGraw-Hill Professional, 2004: chap 12, 375. Robiolio PA, Rigolin VH, Wilson JS, Harrison JK, Sanders LL, Bashore TM, et al. Caecinoid heart disease correlation of high serotonin levels with valvular abnormalities detected by cardiac catheterization and echocardiography. Circulation 1995;92:790-5. Roth BL, Palvimaki EP, Berry S, Khan N, Sachs N, Uluer A, et al. 5-hydroxytrptamine2A (5-HT2A) receptor desensitization can occur without down-regulation. J Pharmacol Exp Ther 1995;275:1638-46. Sadeghi MM, Collinge M, Pardi R, Bender JR. Simvastatin modulates cytokine-mediated endothelial cell adhesion molecule induction: involvement of an inhibitory G protein. J Immunology 2000;165:2712-8. Sadoshima J, Jahn L, Takahashi T, Kulik TJ, Izumo S. Molecular characterization of the stretch-induced adaptation of cultured cardiac cells. An in vitro model of load-induced cardiac hypertrophy. J Biol Chem 1992;267:10551-60. Sadoshima J, Xu Y, Slayter HS, Izumo S. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 1993;75:977-84. Samuel JL, Vandenburgh HH. Mechanically induced orientation of adult rat cardiac myocytes in vitro. In Vitro Cell Dev Biol 1990;26:905-14. Schlant RC & Alexander RW. Hurst’s The Heart (8th ed.). McGraw-Hill Professional, 1994: chap 18, 203-208. Schnell JW, Anderson RA, Stegner JE, Schindler SP, Weinberg RB. Effects of a high polyunsaturated fat diet and vitamin E supplementation on high-density lipoprotein oxidation in humans. Atherosclerosis 2001;159:459-66. Shyu KG, Chen CC, Wang BW, Kuan PL. Angiotensin Ⅱ receptor antagonist blocks the expression of connexin43 induced by cyclical mechanical stretch in cultured neonatal rat cardiac myocytes. J Mol Cell Cardiol 2001;33:691-8. Sioud M. Therapeutic siRNAs. Trends Pharmacol Sci 2004;25:22-8. Sioud M. RNA interference below the immune radar. Nat Biotechnol 2006;24:521-2. Tabuchi M, Inoue K, Usui-Kataoka H, Kobayashi K, Teramoto M, Takasugi K, et al. The association of C-reactive protein with an oxidative metabolite of LDL and its implication in atherosclerosis. J Lipid Res 2007;48:768-81. Tahara N, Kai H, Ishibashi M, Nakaura H, Kaida H, Baba K, et al. Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2006;48:1825-31. Taylor KE, Giddings JC, van den Berg CW. C-reactive protein-induced in vitro endothelial cell activation is an artifact caused by azide and lipopolysaccharide. Arterioscler Thromb Vasc Biol 2005;25:1225-30. Terracio L, Miller B, Borg TK. Effects of cyclic mechanical stimulation of the cellular components of the heart: in vitro. In Vitro Cell Dev Biol 1988;24:53-8. Thurberg BL, Collins T. The nuclear factor-kappa B/inhibitor of kappa B autoregulatory system and atherosclerosis. Curr Opin Lipidol 1998;9:387-96. Tillett WS, Francis T. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J Exp Med 1930;52:561–71. Torsoni AS, Constancio SS, Nadruz W, et al. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 2003;93:140-147. Tousoulis D, Antoniades C, Bosinakou E, Kotsopoulou M, Pitsavos C, Vlachopoulos C, et al. Effects of atorvastatin on reactive hyperemia and Inflammatory process in patients with congestive heart failure. Atherosclerosis 2005;178:359-63. Traenckner EB, Pahl HL, Henkel T, Schmidt KN, Wilk S, Baeuerle PA. Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J 1995;14:2876-83. Tsukada T, Rosenfeld M, Ross R, Gown AM. Immunocytochemical analysis of cellular components in atherosclerotic lesions. Use of monoclonal antibodies with the Watanabe and fat-fed rabbit. Atheriosclerosis 1986;6:601. Vandenburgh HH. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol 1992;262:R350-5. Van der Harst P, Voors AA, van Gilst WH, Bohm M, van Veldhuisen DJ. Statins in the treatment of chronic heart failure: Biological and clinical considerations. Cardiovasc Res 2006;71:443-54. Venugopal SK, Devaraj S, Yuhanna I, Shaul P, Jialal I. Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002;106:1439-41. Verma S, Badiwala MV, Weisel RD, Li SH, Wang CH, Fedak PW, et al. C-reactive protein activates the nuclear factor-kappaB signal transduction pathway in saphenous vein endothelial cells: implications for atherosclerosis and restenosis. J Thorac Cardiovasc Surg 2003;126:1886-91. Verma S, Li SH, Badiwala MV, Weisel RD, Fedak PW, Li RK, et al. Endothelin antagonism and interleukin-6 inhibition attenuate the proatherogenic effects of C-reactive protein. Circulation 2002;105:1890–6. Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002;106:913-9. Vielma S, Virella G, Gorod A, Lopes-Virella M. Chlamydophila pneumoniae infection of human aortic endothelial cells induces the expression of FC gamma receptor II (FcgammaRII). Clin Immunol 2002;104:265-73. Villalon CM, de Vries P, Saxena PR. Serotonin receptors as cardiovascular targets. Drug Discov Today 1997;272:21253–9. Walpola PL, Gotlieb AI, Cybulsky MI, Langille BL. Expression of ICAM-1 and VCAM-1 and monocyte adherence in arteries exposed to altered shear stress. Arterioscler Thromb Vasc Biol 1995;15:2-10. Wang HR, Li JJ, Huang CX, Jiang H. Fluvastatin inhibits the expression of tumor necrosis factor-alpha and activation of nuclear factor-kappaB in human endothelial cells stimulated by C-reactive protein. Clin Chim Acta 2005;353:53-60. Wettschureck N, Rutten H, Zywietz A, Gehring D, Wilkie TM, Chen J, et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of G_q/G_11 in cardiomyocytes. Nat Med 2001;7:1236–40. Willams JK, Sukhova GK, Herrington DM, Lippy P. Pravastatin has cholesterol-lowering independent effects on artery wall of atherosclerotic monkeys. J Am Coll Cardiol 1998;31:684. Xu J, Jian B, Chu R, Lu Z, Li Q, Dunlop J. Serotonin mechanisms in heart valve disease II: the 5-HT(2) receptor and its signaling pathway in aortic valve interstitial cells. Am J Pathol 2002;161:2209–18. Xu J, Xie Z, Reece R, Pimental D, Zou MH. Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite. Arterioscler Thromb Vasc Biol 2006;26:2688-95. Yaron A, Hatzubai A, Davis M, Lavon I, Amit S, Manning AM, et al. Identification of the receptor component of IκBα-ubiquitin ligase. Nature 1998;396:590-4. Yavarone MS, Shuey DL, Tamir H, Sadler TW, Lauder JM. Serotonin and cardiac morphogenesis in the mouse embryo. Teratology 1993;47:573–84. Yeh ET, Anderson HV, Pasceri V, Willerson JT. C-reactive protein: linking inflammation to cardiovascular complications. Circulation 2001;140:974-5. Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? Atherosclerosis. 2000;148:209-14. Zhong H, Voll R, Gosh S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1998;1:661-71. Zuetenhorst JM, Bonfrer JM, Korse CM, Bakker R, van Tinteren H, Taal BG. Carcinoid heart disease: the role of urinary 5-hydroxyindoleacetic acid excretion and plasma levels of atrial natriuretic peptide, transforming growth factor-beta and fibroblast growth factor. Cancer 2003:97;1609-15. Zwaka TP, Hombach V, Torzewski J. C-reactive protein-mediated low density lipoprotein uptake by macrophages: implications for atherosclerosis. Circulation 2001;103:1194-7. 行政院衛生署 (2006) 中華民國九十五年臺灣地區死因統計結果摘要. 行政院衛 生署衛生統計資訊網. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25454 | - |
dc.description.abstract | 動脈粥狀硬化與心肌肥大病變是常見的心血管疾病,病生理過程都有許多基因參與表現,相關聯的訊息傳遞路徑也相當複雜,病程演變接續造成的心肌梗塞與心臟衰竭也都會形成病患嚴重的生命威脅。本研究中試圖找出動脈粥狀硬化與心肌肥大初期參與調控的重要接受器,除了利用小片段干擾RNA確認此基因所扮演的角色外,也嘗試以小片段干擾RNA、藥物或拮抗劑阻斷基因表現,藉由調控接受器基因表現來達到抑制病程進行的目的。
第一部份探討動脈粥狀硬化病程的初期,C-反應蛋白(CRP)是透過內皮細胞上哪個接受器來開啟發炎的訊息。實驗選用人類臍靜脈與大動脈內皮細胞,在經過加入CRP培養後,發現細胞中的NF-κB路徑會被活化,血管細胞黏附因子-1 (vascular cell adhesion molecule-1) 蛋白質表現增加,而CD32的mRNA與蛋白質都會向上調節。利用針對CD32的小片段干擾RNA、SB203580 (p38抑制劑) 都會有抑制CRP導致發炎的效果。此結果證明CRP在動脈與靜脈內皮細胞上的訊息傳遞都需要CD32這個接受器,並且有透過p38路徑。 第二部份探討藥物simvastatin與CRP誘導CD32的關係,並比較CD32的小片段干擾RNA與simvastatin在阻斷發炎上的差別。實驗假設simvastatin抑制CRP導致的內皮細胞中發炎反應是透過mevalonate路徑過程產物。實驗以人類臍靜脈細胞加入CRP刺激後,檢測simvastatin、CD32的小片段干擾RNA的抑制效果。結果顯示simvastatin前處理明顯抑制CRP引起的CD32向上調節,也顯著抑制NF-κB活化、VCAM-1蛋白質的表現與單核球黏附在內皮細胞上的數目。這些抑制效果會在加入mevalonate與geranylgeranyl pyrophosphate而明顯回復,加入farnesyl pyrophosphate則沒有明顯影響。至於CD32的小片段干擾RNA所抑制的CRP相關發炎反應,則不會在加入mevalonate與geranylgeranyl pyrophosphate處理下而有所改變。這代表simvastatin抑制CRP在內皮細胞發炎的反應是透過mevalonate與其下游產物geranylgeranyl pyrophosphate而來,至於的小片段干擾RNA則不是經由此路徑達到抑制的效果。 第三部份利用活體內與活體外的模式探討心肌肥大病程中血清素2B接受器(SR2BR)所扮演的角色。近期的研究發現血清素透過SR2BR可能有調控心臟病生理狀況的功能。實驗中選用Wistar大鼠進行動脈狹窄手術以及新生鼠心肌細胞機械性延展的過度壓力模擬模式,經過動脈狹窄手術兩週後的大鼠,血液中的血清素濃度、心臟組織中SR2BR的mRNA與蛋白質表現量都有明顯增加。以SR2BR抑制劑SB215505治療則可以明顯改善手術後老鼠的心臟功能並減少brain natriuretic peptide (BNP) 及增加nerve growth factor-β的表現,但不會抑制SR2BR的向上調節。在活體心肌細胞機械性延展加上1μM血清素培養的實驗中,所增加的NF-κB核內轉移與BNP蛋白質的增加都可以被針對SR2BR的小片段干擾RNA與caffeic acid phenethyl ester所抑制。根據這些結果都顯示SR2BR在壓力過度負荷的心肌病變當中扮演重要的角色,而且其在心肌細胞中的下游訊息有透過NF-κB來調控BNP的表現。 總括來說,本研究中確認動脈粥狀硬化病程初期CRP造成內皮細胞發炎反應過程中,內皮細胞上的CD32接受器扮演重要的角色。壓力過度負荷引致的心肌肥大病程中,心肌細胞上的SR2BR表現甚為重要。藉由阻斷這兩個接受器表現都可在實驗中達到抑制病程進行的效果。期許對於接受器更深入的了解與研究後,能發展成為治療標的,以提供對於動脈粥狀硬化與心肌肥大疾病治療上另一更佳的藥物選擇。 | zh_TW |
dc.description.abstract | Atherosclerosis and pressure-overload cardiac hypertrophy are common diseases in cardiovascular medicine. A plethora of gene expressions and complicated signaling pathways are involved in the pathogenesis. In this study, we tried to identify the major receptor that was involved in the early stage of atherosclerosis and cardiac hypertrophy. We used siRNA for investigating the role of these receptors and downstream signaling pathways. We also experimentally attenuated the receptors up-regulation by specific siRNA, statins or antagonist.
In the first part of the study, we investigated the relationship between C-reactive protein (CRP) and atherosclerosis and the exact receptor involved in CRP-induced endothelial changes. Human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells (HAEC) were used for the experiments. After incubation with CRP, immunobltting showed a significant NF-κB activation and vascular cell adhesion molecule-1 (VCAM-1) expression. The mRNA level of CD32, the major binding protein for CRP in HUVEC, increased significantly as measured by Northern blot. When these HUVEC were transfected with siRNA directed against CD32 (siCD32), the mRNA of CD32 decreased significantly. The IκB degradation, NF-κB nuclear translocation and VCAM-1 upregulation induced by CRP were all blocked by treatment with siRNA against CD32. SB203580, a P38 inhibitor, significantly attenuated the CRP induced responses while SP600125 (c-jun kinase inhibitor) did not. CRP induced IκB degradation, NF-κB nuclear translocation and VCAM-1 protein expression in HUVEC and HAEC. CRP also increased CD32 expression in HUVEC and HAEC. All the above changed were dependent on CD 32, which might serve as the receptor for CRP and mediated the effects of CRP on HUVEC and HAEC. In the second part of the study, we compared the effects of simvastatin and siRNA against CD32 in CRP-induced pro-inflammatory changes in endothelial cells. We tested the hypothesis that simvastatin inhibited CRP-induced pro-inflammatory changes in endothelial cells by decreasing mevalonate pathway products. HUVEC were incubated with CRP and measurement of CD32, NF-κB activation, VCAM-1 expression and monocyte adhesion were performed. The effects of simvastatin, siCD32 and mevalonate pathway products were also examined. After incubation with CRP, there was a significant increase of CD32 in HUVEC. IB degradation and NF-κB nuclear translocation were also observed. Pre-treatment with simvastatin significantly attenuated the CRP-induced CD32 expression and NF-κB activation. Simvastatin also decreased CRP-induced VCAM-1 expression and reduced monocyte adhesion on endothelial cells. The inhibitory effects of simvastatin were significantly reversed by adding mevalonate, geranylgeranyl pyrophosphate but not by adding farnesyl pyrophosphate. Pre-treatment with siCD32 also decreased CRP induced CD32 expression and IκB degradation. However, neither mevalonate nor geranylgeranyl pyrophosphate reversed the effects of siCD32. CRP induced CD32 expression, IκB degradation, NF-κB nuclear translocation and VCAM-1 protein expression in HUVEC. All the above changes were attenuated by simvastatin. A decrease of mevalonate and subsequent geranylgeranyl pyrophosphate contributes to the inhibitory effects of simvastatin. In the third part of the study, we identified the role of serotonin 2B receptors (SR2BR) in the pathogenesis of cardiac hypertrophy in vivo and in vitro. Recent data suggested that SR2BR might be involved in some cardiac physiopathological situations. Wistar rats of aortic banding and neonatal cardiomyocyte with mechanical stretch were used for cardiomyopathy models. After two weeks of aortic banding surgery, serum serotonin, mRNA and protein expression of SR2BR increased significantly. Selective SR2BR antagonist, SB215505 (SB), significantly reduced the increase in heart weight, the ratio of heart weight and body weight, interventricular septum thickness, left ventricular posterior wall thickness, left ventricular mass and brain natriuretic peptide (BNP) protein but did not significantly attenuate the up-regulation of SR2BR protein expression in rats after aortic banding for three weeks. Down-regulation of nerve growth factor-β in aortic banding rat was also reversed by SB. When cultured cardiomyocytes were subjected to mechanical stretch and serotonin 1 μM, the level of SR2BR and BNP protein increased time-dependently. When transfected with specific siRNA against SR2BR or pretreated with caffeic acid phenethyl ester, the increase of nuclear factor-κB (NF-κB) translocation and BNP protein in cardiomyocytes were both reversed. These results suggested that SR2BR expression was involved in excess of pressure-induced cardiomyopathy and its downstream signaling may through NF-κB to modulate BNP expression in cardiomyocyte. In conclusion, our study confirmed that CD32 mediate the CRP-induced inflammation in endothelial cells. Treatment with siRNA against CD32 and simvastatin both reduced the up-regulation of CD32 and the effects of CRP. On the other hand, SR2BR expression on cardiomyocyte played an important role in pressure-induced cardiac hypertrophy. Therefore, CD32 and SR2BR might serve as therapeutic targets for atherosclerosis and cardiac hypertrophy in the nearly future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:14:06Z (GMT). No. of bitstreams: 1 ntu-96-D92443001-1.pdf: 3697788 bytes, checksum: e6d5336c4734163add3333d540de8e6b (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員審定書…………………………………………………… i
謝辭………………………………………………………………… ii 中文摘要…………………………………………………………… iii 英文摘要……………………………………………………………… iv 第一章 研究背景……………………………………………………. 1 1.1 動脈粥樣硬化的過程………………………………………… 2 1.2 C-反應性蛋白(C-reactive protein)與動脈粥樣硬化的關係… 5 1.3 轉譯因子NF-κB的訊息傳遞途徑…………………………… 6 1.4 血管細胞黏附因子-1 (VCAM-1)的表現與功能………… 8 1.5 降血脂藥物:Statins ……………………………………… 9 1.6 心肌肥大(Cardiac Hypertrophy)………………………… 10 1.7機械性展延(Mechanical Stretch)………………………… 13 1.8血清素2B接受器(Serotonin 2B receptor)………………… 13 1.9 小片段干擾RNA(small interference RNA, siRNA)……… 15 第二章 C-反應蛋白與CD32在人類動脈與靜脈內皮細胞上的關係探討…………………………………………………………… 17 2.1 序言………………………………………………………………18 2.2 研究方法與步驟………………………………………………… 19 2.3 結果……………………………………………………………… 31 2.4 討論……………………………………………………………… 41 第三章 Simvastatin藉由減少mevalonate路徑產物抑制C-反應蛋白引致內皮細胞的發炎反應………………………………… 44 3.1 序言…………………………………………………………... 45 3.2 研究方法與步驟……………………………………………… 45 3.3 結果…………………………………………………………… 57 3.4 討論…………………………………………………………… 64 3.5 結論………………………………………………………… 66 第四章 壓力過度負荷下血清素2B接受器與心肌病變的關係探討…67 4.1 序言……………………………………………………………… 68 4.2 研究方法與步驟………………………………………………… 69 4.3 結果……………………………………………………………… 82 4.4 討論………………………………………………………………91 第五章 結論與展望……………………………………………………95 第六章 參考文獻………………………………………………………98 圖目錄 圖1-1 From Dzau VJ, 2002……………………………………… 4 圖1-2 From Libby P, 2002………………………………………… 4 圖1-3 From Caballero AE, 2003………………………………… 5 圖1-4 From Paul ES, 2003……………………………………… 6 圖1-5 From De Martin R, 2000…………………………………… 7 圖1-6 From Karin M, 2000…………………………………………8 圖1-7 From Walpola, 1995………………………………………… 9 圖1-8 From Van der Harst P, 2006…………………………… 10 圖1-9 From Robbins, 2000……………………………………… 12 圖1-10 From Nebigil CG, 2003………………………………… 14 圖1-11 From Sioud M, 2004……………………………………… 15 圖1-12 From Hutvagner G, 2002………………………………… 16 圖2-1 …………………………………………………………… 33 圖2-2 ……………………………………………………………… 34 圖2-3 …………………………………………………………… 36 圖2-4 ……………………………………………………………… 37 圖2-5 ……………………………………………………………… 39 圖2-6 …………………………………………………………… 40 圖3-1 ……………………………………………………………… 58 圖3-2 ……………………………………………………………… 59 圖3-3 ……………………………………………………………… 61 圖3-4 ……………………………………………………………… 62 圖3-5 …………………………………………………………… 63 圖4-1 From Flexcell International Corporation………… 72 圖4-2 From Flexcell International Corporation………… 73 圖4-3 …………………………………………………………… 83 圖4-4 ……………………………………………………………… 84 圖4-5 ……………………………………………………………… 87 圖4-6 ……………………………………………………………… 98 圖4-7 ……………………………………………………………… 90 表目錄 表1-1 From Barnes PJ, 1997……………………………………… 7 表4-1 ……………………………………………………………… 85 表4-2 …………………………………………………………… 86 | |
dc.language.iso | zh-TW | |
dc.title | C-反應蛋白與機械性壓力於動脈粥狀硬化與心肌肥大中的致病機轉探討 | zh_TW |
dc.title | Involvement of C-Reactive Protein and Mechanical Stress in Pathogenesis of Atherosclerosis and Cardiac Hypertrophy | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 徐國基(Kou-Gi Shyu),蘇銘嘉(Ming-Jai Su),江福田(Fu-Tien Chiang),楊偉勛(Wei-Shiung Yang) | |
dc.subject.keyword | 動脈粥狀硬化,心肌肥大,C-反應蛋白,CD32接受器,血清素2B接受器,小片段干擾RNA, | zh_TW |
dc.subject.keyword | atherosclerosis,cardiac hypertrophy,C-reactive protein,CD32 receptorserotonin 2B receptor,small interference RNA, | en |
dc.relation.page | 118 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-04-20 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 3.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。