Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25390
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李學智(Hsueh-Jyh Li)
dc.contributor.authorHsin-Hsu Linen
dc.contributor.author林信旭zh_TW
dc.date.accessioned2021-06-08T06:11:32Z-
dc.date.copyright2007-07-16
dc.date.issued2007
dc.date.submitted2007-07-06
dc.identifier.citation[1] Jeremy Landt, “The history of RFID”, IEEE Potentials, 2005.
[2] Roy Want, “An Introduction to RFID Technology”, published by the IEEE CS and IEEE ComSoc, 2006.
[3] Hossain, MD, Shamim Shahriar, Karmakar, Nemai, “An Overview on RFID Frequency Regulations and Antennas”, Electrical and Computer Engineering, 2006.ICECE '06. International Conference, pp.424 – 427, Dec. 2006
[4] Klaus Finkenzeller, “RFID Handbook. 2th edition”, John Wiley and Sons, 2003.
[5] Curty J.,Declercq M., Dehollain., Joehl N.,”Design and optimization of passive UHF RFID systems”, Disponible chez l'éditeur, Sep. 2006.
[6] Zheng Zhu,“RFID Analog Front End Design Tutorial (version 0.0) ”Auto-ID lab at MIT Report, January 2004.
[7] H. J. Li, C. Y. Lo, and J. Y. Chen, “Impedance Loading State Determination for UHF Passive RFID Applications,” submitted for publication.
[8] R. B. Green, “The General Theory of Antenna Scattering,” Antenna Laboratory, Ohio State University, Report No. 223-17, November 1963.
[9] J. Y. Chen,“Analysis and Measurement for RFID Detection”. Master Thesis of the Graduate Institute of Communication Engineering, National Taiwan University, July, 2006.
[10] Curty, J.-P., Joehl, N., Dehollain, C., Declercq, M.J.,“Remotely Powered Addressable UHF RFID Integrated System”, IEEE J. Solid-State Circuits, Vol. 40, pp.2193 - 2202, Nov. 2005
[11] Nikitin. P.V., Rao, K.V.S., Lam, S.F., Pillai, V., Martinez, R., Heinrich, H.,“ Power reflection coefficient analysis for complex impedances in RFID tag design Microwave Theory and Techniques” IEEE Trans.Vol. 53, pp:2721-2725, Sept. 2005.
[12] Nikitin, P.V., Rao, K.V.S., “Theory and measurement of backscattering from RFID tags” IEEE Antennas and Propagation Magazine, Vol. 48, pp. 212 – 218, Dec. 2006
[13] Curty, J.-P., Joehl, N., Dehollain, C., Declereq, M., “A 2.45 GHz remotely powered RFID system” Research in Microelectronics and Electronics, 2005 PhD,Vol. 1, pp.153 – 156, July 2005.
[14] Nannapaneni Narayana Rao, Elements of Engineering Electromagnetics. 5th edition, Prentice Hall International, 2000.
[15] Ricci, A., Grisanti, M., De Munari, I., Ciapolini, P., ”Design of a Low-Power Digital Core for Passive UHF RFID Transponder” Digital System Design 9th EUROMICRO Conference 2006. pp. 561 – 568. 2006.
[16] Serene Ow, “Impact of Mutual Coupling on Compact MIMO Systems”, Department of Electroscience Lund Institute of Technology, Feb. 2005.
[17] Nannapaneni Narayana Rao, Elements of Engineering Electromagnetics, 6th Edition, Pearson Education International, pp. 760 – 765, 2004.
[18] Warren L. Stutzman and Gary A. Thiele, Antenna Theory and Design, 2ndEdition, John Wiley & Sons Inc., pp. 493 – 515, 1998.
[19] SEMCAD-X Reference Manual, Schmid & Partner Engineering AG, July 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25390-
dc.description.abstract在本篇論文中,我們提出了一款新型射頻辨識標籤架構,其天線構接方式與負載阻抗(Loading impedance)設計與傳統標籤不同。傳統標籤僅以一天線進行接收與傳送,無法得到最大後向散射差值(Backscattering level difference)且在不匹配狀態期間無法接收能量,為了解決傳統標籤的問題,我們提出新型標籤架構,其使用兩支各自獨立天線進行傳送與接收。一天線專責接收,其阻抗與標籤匹配,具有最大能量轉移,另一天線經由最佳負載阻抗(Loading impedance)設計,使其具有最大後向散射差值,進而提升偵測效能。
我們建立了一散射場量測系統,藉由該系統對新型標籤架構性能進行驗證與分析,並與傳統標籤進行效能比較,其實驗結果驗證新型標籤性能優於傳統標籤且符合理論分析,新型標籤偵測效能相較傳統標籤可提升6dB,預期此新型架構將可大幅提升讀取距離。
另外,對緊密排列的標籤天線陣列而言,標籤天線之間互耦合(Mutual coupling)效應對射頻辨識系統效能造成的影響是重要的問題,這種標籤天線之間的交互影響可能造成能量接收降低與某些標籤無法被讀取,因此,我們探討互耦合效應及其對射頻辨識系統特性的影響,藉由量測與模擬分析電氣與幾何上的變化對標籤讀取性能的影響,進而提出可行之解決方案。
zh_TW
dc.description.abstractIn this thesis, we propose a novel structure of tag for RFID system. The way of antennas configuration and loading impedance design are different from conventional tags. The conventional tag has only one antenna, which is used for both receiving and scattering. The antenna is designed to match tag IC for receiving and switched between match state and mismatch state for backscattering. With this design, the maximum backscattering level difference cannot be obtained and also no power is supplied to the tag during the mismatch state. To simultaneously solve the above two problems, we propose a novel tag structure. The novel structure contains two independent antennas. One antenna is for receiving that is designed to match the tag IC for maximum power transfer. The other is for scattering. The scattering antenna is alternatively connected to two optimized impedance states for maximum backscattering level difference. With this new structure it is expected that the reading range can be much increased.
We construct a system for measuring the backscattering field. We measure the backscattered signal and compare the detection performance. Experimental results show that performance obtained by the novel structure is 6dB better than that of the conventional tag.
In addition, mutual coupling is an important problem for tag antennas. This type of interaction may reduce energy received and result in the failure of tag detection. Therefore, we investigated the effect of mutual coupling on RFID performance. By measurements and simulations, we can analyze the impact of electrical and geometrical variables on readability of the tag and try to provide a feasible solution.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:11:32Z (GMT). No. of bitstreams: 1
ntu-96-J94921015-1.pdf: 2329108 bytes, checksum: 3f5a04839ae5f2c81161171577561727 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
中文摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 XI
第一章 導論 1
1.1 研究背景 1
1.2 研究動機與方法 2
1.3 論文架構 3
第二章 射頻辨識系統概述 5
2.1 簡介 5
2.2 被動標籤之基本架構 7
2.3 射頻辨識系統模型 9
第三章 射頻辨識系統標籤之新型架構 15
3.1 簡介 15
3.2 傳統標籤概述 15
3.3 新型標籤架構設計 19
3.4 新型標籤架構量測 23
3.4.1 逆散射量測系統架構與設定 23
3.4.2 量測結果 28
3.4.3 後向散射調變信號偵測系統 30
3.4.4 量測結果 34
3.5 新型標籤調變電路模擬 36
3.5.1 前言 36
3.5.2 模擬設定 37
3.5.3 模擬結果 41
3.6 新型標籤天線設計探討 43
3.6.1 前言 43
3.6.2 量測與參數設定 44
3.6.3 量測結果 46
第四章 天線互耦合效應對射頻辨識系統特性影響 49
4.1 簡介 49
4.2 天線互耦合效應概述 50
4.3 時域有限差分(FDTD)演算法 52
4.4 多標籤之天線互耦合效應量測 55
4.4.1 能量接收量測系統架構與設定 56
4.4.2 量測結果 59
4.4.3 模擬與結果分析 61
4.4.4 後向散射量測系統架構與設定 62
4.4.5 量測結果 66
4.5 標籤排列配置分析 69
4.5.1 模擬 70
4.5.2 量測 72
第五章 結論 75
5.1 總結 75
5.2 未來研究方向 78
參考文獻 79
dc.language.isozh-TW
dc.subject負載阻抗zh_TW
dc.subject射頻辨識zh_TW
dc.subject互耦合zh_TW
dc.subject散射場zh_TW
dc.subject後向散射zh_TW
dc.subjectMutual coupling.en
dc.subjectScattering fielden
dc.subjectImpedance loadingen
dc.subjectBackscatteringen
dc.subjectRadio Frequency Identification (RFID)en
dc.title射頻識別標籤之新型架構設計與分析zh_TW
dc.titleAnalysis and Design of a Novel Structure of Tag for RFIDen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹恆偉,楊成發,馬自莊,劉馨勤
dc.subject.keyword射頻辨識,負載阻抗,後向散射,散射場,互耦合,zh_TW
dc.subject.keywordRadio Frequency Identification (RFID),Impedance loading,Backscattering,Scattering field,Mutual coupling.,en
dc.relation.page80
dc.rights.note未授權
dc.date.accepted2007-07-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved