Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25373Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 繆希椿 | |
| dc.contributor.author | Wei-Feng Yen | en |
| dc.contributor.author | 顏偉峰 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:10:54Z | - |
| dc.date.copyright | 2007-07-20 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-10 | |
| dc.identifier.citation | Begovich, A.B., Carlton, V.E., Honigberg, L.A., Schrodi, S.J., Chokkalingam, A.P., Alexander, H.C., Ardlie, K.G., Huang, Q., Smith, A.M., Spoerke, J.M., et al. (2004). A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. American journal of human genetics 75, 330-337.
Benkhelifa, S., Provot, S., Lecoq, O., Pouponnot, C., Calothy, G., and Felder-Schmittbuhl, M.P. (1998). mafA, a novel member of the maf proto-oncogene family, displays developmental regulation and mitogenic capacity in avian neuroretina cells. Oncogene 17, 247-254. Blank, V., and Andrews, N.C. (1997). The Maf transcription factors: regulators of differentiation. Trends Biochem Sci 22, 437-441. Bottini, N., Musumeci, L., Alonso, A., Rahmouni, S., Nika, K., Rostamkhani, M., MacMurray, J., Meloni, G.F., Lucarelli, P., Pellecchia, M., et al. (2004). A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nature genetics 36, 337-338. Cohen, S., Dadi, H., Shaoul, E., Sharfe, N., and Roifman, C.M. (1999). Cloning and characterization of a lymphoid-specific, inducible human protein tyrosine phosphatase, Lyp. Blood 93, 2013-2024. Cousins, D.J., Lee, T.H., and Staynov, D.Z. (2002). Cytokine coexpression during human Th1/Th2 cell differentiation: direct evidence for coordinated expression of Th2 cytokines. J Immunol 169, 2498-2506. Friedman, J.S., Khanna, H., Swain, P.K., Denicola, R., Cheng, H., Mitton, K.P., Weber, C.H., Hicks, D., and Swaroop, A. (2004). The minimal transactivation domain of the basic motif-leucine zipper transcription factor NRL interacts with TATA-binding protein. J Biol Chem 279, 47233-47241. Fujiwara, K.T., Kataoka, K., and Nishizawa, M. (1993). Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 8, 2371-2380. Guo, L., Hu-Li, J., and Paul, W.E. (2004). Probabilistic regulation of IL-4 production in Th2 cells: accessibility at the Il4 locus. Immunity 20, 193-203. Hasegawa, K., Martin, F., Huang, G., Tumas, D., Diehl, L., and Chan, A.C. (2004). PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science 303, 685-689. Hill, R.J., Zozulya, S., Lu, Y.L., Ward, K., Gishizky, M., and Jallal, B. (2002). The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Experimental hematology 30, 237-244. Ho, I.C., and Glimcher, L.H. (2002). Transcription: tantalizing times for T cells. Cell 109 Suppl, S109-120. Ho, I.C., Hodge, M.R., Rooney, J.W., and Glimcher, L.H. (1996). The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. Cell 85, 973-983. Hurt, E.M., Wiestner, A., Rosenwald, A., Shaffer, A.L., Campo, E., Grogan, T., Bergsagel, P.L., Kuehl, W.M., and Staudt, L.M. (2004). Overexpression of c-maf is a frequent oncogenic event in multiple myeloma that promotes proliferation and pathological interactions with bone marrow stroma. Cancer cell 5, 191-199. Kataoka, K., Fujiwara, K.T., Noda, M., and Nishizawa, M. (1994). MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 14, 7581-7591. Kataoka, K., Igarashi, K., Itoh, K., Fujiwara, K.T., Noda, M., Yamamoto, M., and Nishizawa, M. (1995). Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol 15, 2180-2190. Kataoka, K., Nishizawa, M., and Kawai, S. (1993). Structure-function analysis of the maf oncogene product, a member of the b-Zip protein family. J Virol 67, 2133-2141. Kawakami, T., and Galli, S.J. (2002). Regulation of mast-cell and basophil function and survival by IgE. Nat Rev Immunol 2, 773-786. Kawasaki, A., Matsumura, I., Kataoka, Y., Takigawa, E., Nakajima, K., and Kanakura, Y. (2003). Opposing effects of PML and PML/RAR alpha on STAT3 activity. Blood 101, 3668-3673. Kim, J.I., Ho, I.C., Grusby, M.J., and Glimcher, L.H. (1999). The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745-751. Lavender, P., Cousins, D., and Lee, T. (2000). Regulation of Th2 cytokine gene transcription. Chem Immunol 78, 16-29. Matthews, R.J., Bowne, D.B., Flores, E., and Thomas, M.L. (1992). Characterization of hematopoietic intracellular protein tyrosine phosphatases: description of a phosphatase containing an SH2 domain and another enriched in proline-, glutamic acid-, serine-, and threonine-rich sequences. Molecular and cellular biology 12, 2396-2405. Miaw, S.C., Choi, A., Yu, E., Kishikawa, H., and Ho, I.C. (2000). ROG, repressor of GATA, regulates the expression of cytokine genes. Immunity 12, 323-333. Mosmann, T.R., and Coffman, R.L. (1989). TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 7, 145-173. Motohashi, H., O'Connor, T., Katsuoka, F., Engel, J.D., and Yamamoto, M. (2002). Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294, 1-12. Mullen, A.C., High, F.A., Hutchins, A.S., Lee, H.W., Villarino, A.V., Livingston, D.M., Kung, A.L., Cereb, N., Yao, T.P., Yang, S.Y., and Reiner, S.L. (2001). Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907-1910. Murphy, K.M., and Reiner, S.L. (2002). The lineage decisions of helper T cells. Nat Rev Immunol 2, 933-944. Nishizawa, M., Kataoka, K., Goto, N., Fujiwara, K.T., and Kawai, S. (1989). v-maf, a viral oncogene that encodes a 'leucine zipper' motif. Proc Natl Acad Sci U S A 86, 7711-7715. Orozco, G., Sanchez, E., Gonzalez-Gay, M.A., Lopez-Nevot, M.A., Torres, B., Caliz, R., Ortego-Centeno, N., Jimenez-Alonso, J., Pascual-Salcedo, D., Balsa, A., et al. (2005). Association of a functional single-nucleotide polymorphism of PTPN22, encoding lymphoid protein phosphatase, with rheumatoid arthritis and systemic lupus erythematosus. Arthritis and rheumatism 52, 219-224. Ouyang, W., Lohning, M., Gao, Z., Assenmacher, M., Ranganath, S., Radbruch, A., and Murphy, K.M. (2000). Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27-37. Paul, W.E., and Seder, R.A. (1994). Lymphocyte responses and cytokines. Cell 76, 241-251. Schwartzberg, P.L., Finkelstein, L.D., and Readinger, J.A. (2005). TEC-family kinases: regulators of T-helper-cell differentiation. Nature reviews 5, 284-295. Takagi, Y., Kobayashi, M., Li, L., Suzuki, T., Nishikawa, K., and Yamamoto, M. (2004). MafT, a new member of the small Maf protein family in zebrafish. Biochem Biophys Res Commun 320, 62-69. Tanaka, Y., So, T., Lebedeva, S., Croft, M., and Altman, A. (2005). Impaired IL-4 and c-Maf expression and enhanced Th1 cell development in Vav1-deficient mice. Blood. Wu, J., Katrekar, A., Honigberg, L.A., Smith, A.M., Conn, M.T., Tang, J., Jeffery, D., Mortara, K., Sampang, J., Williams, S.R., et al. (2006). Identification of substrates of human protein-tyrosine phosphatase PTPN22. The Journal of biological chemistry 281, 11002-11010. Yang-Feng, T.L., and Swaroop, A. (1992). Neural retina-specific leucine zipper gene NRL (D14S46E) maps to human chromosome 14q11.1-q11.2. Genomics 14, 491-492. Zhang, Y.L., Yao, Z.J., Sarmiento, M., Wu, L., Burke, T.R., Jr., and Zhang, Z.Y. (2000). Thermodynamic study of ligand binding to protein-tyrosine phosphatase 1B and its substrate-trapping mutants. The Journal of biological chemistry 275, 34205-34212. Zhu, J., Guo, L., Watson, C.J., Hu-Li, J., and Paul, W.E. (2001). Stat6 is necessary and sufficient for IL-4's role in Th2 differentiation and cell expansion. J Immunol 166, 7276-7281 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25373 | - |
| dc.description.abstract | 轉錄因子c-Maf 在不同種類的細胞中扮演不同的角色。例如c-Maf 在type 2 T Helper cell (TH2) 為IL-4基因之特異性轉錄因子。而在macrophages細胞中,c-Maf 則為IL-10基因的 activator。此外c-Maf 還能down-regulate IL-12 p40 and p35基因的轉錄作用。於是我們假設c-Maf 之所以在不同的細胞中會有不同功能可能是透過不同的交互作用的蛋白質所調控。而我們利用酵母菌雙雜交系統篩選CD8+T細胞c-Maf的交互作用蛋白質。最後我得到15個可能與c-Maf有交互作用的蛋白質,而其中之ㄧ為PTPN22。在這次研究中,我們發現primary resting or activated CD4+ T helper cells 會表現PTPN22。此外在in vitro 的實驗中可以發現PTPN22與c-Maf 的蛋白質交互作用。我們也發現PTPN22可以抑制c-Maf在IL-4 promoter 上的轉錄能力。同時在HEK 293T 細胞中我們可以發現c-Maf的蛋白酪胺酸有磷酸化的情形。而異位表現DsRed2-c-Maf 與EYFP-PTPN22時在細胞核中可以觀察到co-localization的現象。然而關於在in vivo 環境中c-Maf磷酸化的意義則需要更進一步去研究探討。 | zh_TW |
| dc.description.abstract | The transcription factor c-Maf plays different roles in different types of cells. For instance, c-Maf is the IL-4–specific transcription factor in TH2 cells. Besides, c-Maf is a potent activator of the IL-10 gene expression whereas c-Maf could suppress the IL-12 p40 and p35 gene transcription in macrophages. We hypothesize that c-Maf could have distinct functions through interacting with cell-specific protein in different types of cells. We screened the c-Maf interacting protein in CD8+ T cell library by yeast two-hybrid system. Fifteen candidate genes were obtained. One of the candidate genes encoded a protein-tyrosine phosphatase, PTPN22. Here, we demonstrated that PTPN22 can express in primary resting or activated CD4+ T helper cells and c-Maf can interact with PTPN22 in vitro. Furthermore, we demonstrated that the PTPN22 had the ability to diminish the transactivity of c-Maf on IL-4 promoter. We also found that the tyrosine residues of c-Maf could be phosphorylated in HEK 293T cell line. Moreover, we found that ectopic-expressed DsRed2-c-Maf and EYFP-PTPN22 could co-localize in the nucleus. However, the functions of phosphorylated c-Maf in vivo need to be further elucidate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:10:54Z (GMT). No. of bitstreams: 1 ntu-96-R94449004-1.pdf: 2093965 bytes, checksum: 52f96f8ab02270d5ea0f0d781a7db99b (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Acknowledgement i
Abstract ii CHAPTER I Introduction 1 1.1.1 T helper cell development and differentiation 1 1.2 An overview of c-Maf transcription factor 2 1.2.1 The discovery of c-Maf 2 1.2.2 Protein structure of c-Maf 3 1.2.3 Regulation of c-Maf 4 1.3 An overview of PTPN22 5 1.3.1 Introduction of PTPN22 5 1.3.2 The discovery of PTPN22 5 1.3.3 Biological functions of PTPN22 6 1.4 Rationale to study the relationship between c-Maf and PTPN22 7 CHAPTER II Material and Methods 9 2.1 Experimental procedures 9 2.1.1Constructions 9 2.1.2 Tyrosine phosphorylation sites prediction 14 2.1.3 Yeast two-hybrid system 14 2.1.4 Cell culture 15 2.1.5 HEK 293T cells transfection 15 2.1.6 Luciferase assay 16 2.1.7 Purification of GST-PTPN22(201aa) fusion protein for the production of PTPN22 polyclonal antibodies 16 2.1.8 In vitro CD4+ T Helper cells differentiation ..17 2.1.9 Co-immunoprecipitation assay ..17 2.1.10 Nuclear and cytoplasmic extracts assay 20 2.1.11 Immunoprecipitation of phosphorylated c-Maf 20 2.1.12 Confocal microscopy 21 2.2 Experimental materials 22 2.2.1 Enzymes 22 2.2.2 Kits 22 2.2.3 Instruments and softwares 23 2.2.4 Chemicals, reagents and materials 23 2.2.5 Media, solutions and buffers 25 CHAPTER III Results 31 3.1 Identify potential c-Maf interacting proteins from CD8+ T cell cDNA library by yeast two-hybrid system 31 3.2 PTPN22 expresses in primary TH1 and TH2 31 3.3 PTPN22 could be the interacting partner of c-Maf 33 3.4 PTPN22 could reduce c-Maf transactivity in IL-4-luciferase reporter system 33 3.5 c-Maf could be tyrosine phosphorylated 34 3.6 The transactivity of c-Maf Y298F mutant was impaired 35 3.7 Cellular localizations of c-Maf and PTPN22 were analysed by confocal microscopy and nuclear and cytoplasmic extracts assay 36 3.8 PTPN22 and c-Maf could co-localize in the nucleus 36 CHAPTER IV Discussions 38 References 42 Figures and Tables 46 | |
| dc.language.iso | en | |
| dc.subject | c-Maf | en |
| dc.title | 蛋白酪胺酸磷酸脢在調控c-Maf活性中所扮演的角色 | zh_TW |
| dc.title | The role of PTPN22 in regulating c-Maf activity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 司徒惠康,李建國,游偉絢 | |
| dc.subject.keyword | 細胞激素,輔助型T細胞, | zh_TW |
| dc.subject.keyword | c-Maf, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-10 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 免疫學研究所 | zh_TW |
| Appears in Collections: | 免疫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-96-1.pdf Restricted Access | 2.04 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
