Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25371
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳
dc.contributor.authorChun-Ping Yangen
dc.contributor.author楊君平zh_TW
dc.date.accessioned2021-06-08T06:10:49Z-
dc.date.copyright2007-07-25
dc.date.issued2006
dc.date.submitted2007-07-07
dc.identifier.citation1. Iijima S 1991 Nature 354 56
2. Han W, Fan S, Li Q and Hu Y 1997 Science 277 1287
3. Huang M, Mao S, Fieck H, Yan H, Wu Y, Kind H, Weber E,Russo R and Yang P 2001 Science 292 1897
4. Yan H, He R, Johnson J, Law M, Saykally R and Yang P 2003 J. Am. Chem. Soc. 125 4728
5. Liu C, Zapien J, Yao Y, Meng X, Lee C, Fan S, Lifshitz Y and Lee S 2000 Adv. Mater. 15 838
6. Yu Q, Xu B, Wu Q, Liao Y, Wang G, Fang R, Lee H and Lee C 2003 Appl. Phys. Lett. 83 4723
7. Dai Y, Zhang Y, Bai Y and Wang Z 2003 Chem. Phys. Lett. 375 96
8. Geng B, Wang G, Jiang Z, Xie T, Sun S, Meng G and Zhang L 2003 Appl. Phys. Lett. 83 4791
9. Ronning C, Gao P, Ding Y, Wang Z and Schwen D 2004 Appl. Phys. Lett. 84 783
10. Jie J, Wang G, Han X, Yu Q, Liao Y, Li G and Hou J 2004 Chem. Phys. Lett. 387 466
11. Yang P, Yan H, Mao S, Russo R, Johnson J, Saykally R, Morris N, Phan J, He R and Choi H 2002 Adv. Funct. Mater. 12 323
12. Ohta, H.; Hosono, H. Mater. Today 2004, 42.
13. V. F. Henley, in Anodic Oxidation of Aluminum and its Alloys, (Pergamon Press, New York, 1982), p. 1. and p. 51.
14. H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc. 144, L123 (1997)
15. C.J. Miller, C.A. Widrig, D.H. Charych, M. Majda, J. Phys. Chem. 92 (1988) 1928.
16. C.J. Brumlik, C.R. Martin, Anal. Chem. 64 (1992) 1201.
17. H. Masuda, M. Ohya, K. Nishio, H. Ashio, M. Nakao, M. Nohtomi, A. Yokoo, T. Tamamura, Jpn. J. Appl. Phys. 39 (2000) 1039.
18. P. Takhistov, Biosens. Bioelectron. 19 (2004) 1445.
19. A. W. Brace and P. G. Sheasby, The Technology of Anodization Aluminum (Technicopy, 1979).
20. H. Masudaand K. Fukuda, Science 268, 1466 (1995).
21. K. Nielsch, F. Muller, A. P. Li, and U. Gosele, Adv. Mater. Weinheim, Ger. 12, 582 (2000).
22. C. R. Martin, Science 266, 1961 (1994)
23. A. P. Li, F. Mu..ler, A. Birner, K. Nielsch, and U. Go..sele, J Appl. Phys 84, 6023 (1998)
24. E.R. Holland, Y. Li, P. Abbott, P.R. Wilshaw, Displays 21 (2000) 99.
25. Scanning electron microscopy and X-ray microanalysis, Dick Briggs, John Brady and Bob newton, 2000
26. Scanning electron microscopy and X-ray microanalysis, Grahame Lawes, 1987
27. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.
28. Ohta, H.; Hosono, H. Mater. Today 2004, 42.
29. Mott N F 1974 Metal–Insulator Transitions (London: Taylor and Francis)
30. Jie J, Wang G, Han X, Yu Q, Liao Y, Li G and Hou J 2004 Chem. Phys. Lett. 387 466
31. Morales A and Lieber M 1998 Science 279 208
32. Zhou S, Feng Y and Zhang L 2003 J. Cryst. Growth 252 1
33. Zhou S, Feng Y and Zhang L 2003 Phys. Low-Dim. Struct. 1/2 87
34. Meng X, Jiang Y, Liu J, Lee C, Bello I and Lee S 2003 Appl. Phys. Lett. 83 2244
35. Vanheusden K, WarrenW, Seager C, Tallant D, Voigt J and Gnade B 1996 J. Appl. Phys. 79 7983
36. Wang Y, Meng G, Zhang L, Liang C and Zhang J 2002 Chem. Mater. 14 1773
37. Ohta, H.; Hosono, H. Mater. Today 2004, 42.
38. Dai, Z. R.; Pan, Z. W.; Wang, Z. L. AdV. Funct. Mater. 2003, 13, 9.
39. (a) Chia, C. H.; Makino, T.; Tamura, K.; Segawa, Y.; Kawasaki, M.; Ohtomo, A.; Koinuma, H. Appl. Phys. Lett. 2003, 82, 1848. (b) Park, W. I.; Yi, G. C.; Kim, M.; Pennycook, S. J. AdV. Mater. 2002, 14, 1841. (c) Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H. AdV. Funct. Mater. 2002, 12, 323. (d) Yao, B. D.; Chan, Y. F.; Wang, N. Appl. Phys. Lett. 2002, 81, 757.
40. (a) Liu, B.; Zeng, H. C. Langmuir 2004, 20, 4196. (b) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430. (c) Pacholski, C.; Kornowski, A.; Weller, H. Angew. Chem., Int. Ed. 2002, 41, 1188. (d) Guo, L.; Ji, Y. L.; Xu, H.; Simon, P.; Wu, Z. J. Am. Chem. Soc. 2002, 124, 14864. (e) Zhang, J.; Sun, L. D.; Yin, J. L.; Su, H. L.; Liao, C. S.; Yan, C. H. Chem. Mater. 2002, 14, 4172. (f) Feng, X.; Feng, L.; Jin, M.; Zhai, J.; Jiang, L.; Zhu, D. J. Am. Chem. Soc. 2004, 126, 62. (g) Vayssieres, L.; Keis, K.; Lindquist, S.-E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 3350.
41. (a) Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Nat. Mater. 2003, 2, 821. (b) Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Angew. Chem., Int. Ed. 2003, 42, 3031. (c) Peterson, R. B.; Fields, C. L.; Gregg, B. A. Langmuir 2004, 20, 5114.
42. Choy, J. H.; Jang, E. S.; Won, J. H.; Chung, J. H.; Jang, D. J.; Kim, Y. W. AdV. Mater. 2003, 15, 1911.
43. Haidong Yu, Zhongping Zhang, Mingyong Han, Xiaotao Hao, and Furong Zhu J. Am. Chem. Soc. 2005, 127, 2379.
44. The oxidation of metal zinc by naturally dissolved oxygen is very slow in water due to the surface-passivated oxide layer. However, in the presence of formamide, the spontaneous atmospheric oxidation process can be accelerated at room temperature to release zinc ions into reaction solution through the formation of zinc-formamide complexes. More zincformamide complexes can be supplied continuously at an elevated temperature. At an optimized temperature of 65 °C in 5% formamide aqueous solution, high-quality ZnO nanoarrays can be produced readily by this simple chemical-liquid-deposition approach during a period of 24 h of reaction. In the temporal evolution of zinc oxidation, zinc concentration increased proportionally with reaction time due to the continuous release of zinc ions into solution, and Zn complexes can be accumulated up to 0.46 mM gradually after 24 h in our preparation system. Freshly produced Zn ions can be supplied continuously for the subsequent crystal growth of nanorods on the seed particles through the thermal decomposition of the resulting zinc-formamide complexes.
45. Bakkers, E. P. A. M.; Verheijen, M. A. J. Am. Chem. Soc. 2003, 125. 3440.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25371-
dc.description.abstractIn this thesis, several methods in fabricating well-aligned ZnO nanorods as well as their optical properties will be reported. Firstly, the fabrication of Cu-doped ZnO nanorods via VLS mechanism or electrodeposition method using AAO as templates will be demonstrated. The redshift of the band-gap emission will be illustrated by the measurement of CL spectra and its relation with the doping of Cu will also be discussed. In the second part, AAO membranes are used in the seeded-growth of well-aligned single-crystalline ZnO nanorod arrays as the seeded substrates. The formation of highly-oriented ZnO nanorod arrays will be discussed, hoping to contribute to further research in field-emission or photonic crystal.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:10:49Z (GMT). No. of bitstreams: 1
ntu-95-R93222039-1.pdf: 1613715 bytes, checksum: 3ea9db0218942d6b968de05c909c5a39 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsChapter 1 Introduction ............................................................................................ 1
Chapter 2 Experimental Bacground ………………................................................ 5
2.1 Cathodoluminescence(CL) .............................................................................. 5
2.1.1 Introduction of luminescence ..………………………………………… 5
2.1.2 Direct and indirect band gap …………………………………………... 7
2.1.3 Recombination processes ……………………………………………… 10
2.1.4 Cathodoluminescence (CL) …...………………………………………. 13
2.2 Scanning Electron Microscopy (SEM) ......................................................... 15
2.3 Anodic Aluminum Oxide …………………………………………………... 22
2.3.1 Introduction ………………………………………................................. 22
2.3.2 The structure and fabrication of AAO films ......................................... 23
Chapter 3 The fabrication of ZnCuO nanorods ………………………………… 31
3.1 Introduction ………………………………………………………………… 31
3.2 Fabrication of ZnCuO nanorods via VLS mechanism …………………... 34
3.2.1 Experimental details …………………………………………………... 34
3.2.2 Experimental Results ………………………………………………….. 38
3.2.3 Discussion ………………………………………………………………. 44
3.3 Fabrication of ZnCuO nanorods based on AAO templates ……………... 45
3.3.1 Experimental details …………………………………………………... 45
3.3.2 Experimental results and discussion ……………………………………. 48
Chapter 4 Fabrication of well-aligned ZnO nanorods at ow temperature ……… 53
4.1 Introduction …………………………………………………………………… 53
4.2 Experemental details …………………………………………………………. 55
4.3 Results and discussion ………………………………………………………... 58
Chapter 5 Conclusion ……………………………………………………………….. 67
dc.language.isoen
dc.title參雜銅之氧化鋅奈米柱之製備/規則排列氧化鋅奈米柱之製備zh_TW
dc.titleFabrication of well-aligned ZnCuO/ZnO nanorodsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張顏暉,林泰源
dc.subject.keyword氧化鋅,奈米柱,氧化銅,規則排列,陽極氧化鋁,陰極發光,zh_TW
dc.subject.keywordZnO,ZnCuO,nanorod,AAO,well-aligned,cathodoluminescence,en
dc.relation.page67
dc.rights.note未授權
dc.date.accepted2007-07-10
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved